You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

5.0 KiB

FAQ

インストールと環境

Flash attention 導入の失敗例

Flash attention は、トレーニングと推論を加速するオプションです。H100、A100、RTX 3090、T4、RTX 2080 などの Turing、Ampere、Ada、および Hopper アーキテクチャの NVIDIA GPU だけが、flash attention をサポートできます。それをインストールせずに私たちのモデルを使用することができます。

transformers のバージョンは?

4.31.0 が望ましいです。

コードとチェックポイントをダウンロードしましたが、モデルをローカルにロードできません。どうすればよいでしょうか?

コードを最新のものに更新し、すべてのシャードされたチェックポイントファイルを正しくダウンロードしたかどうか確認してください。

qwen.tiktoken が見つかりません。これは何ですか?

これはトークナイザーのマージファイルです。ダウンロードする必要があります。git-lfs を使わずにリポジトリを git clone しただけでは、このファイルをダウンロードできないことに注意してください。

transformers_stream_generator/tiktoken/accelerate が見つかりません。

コマンド pip install -r requirements.txt を実行してください。このファイルは https://github.com/QwenLM/Qwen-7B/blob/main/requirements.txt にあります。

デモと推論

デモはありますかCLI と Web UI のデモはありますか?

はい、Web デモは web_demo.py を、CLI デモは cli_demo.py を参照してください。詳しくは README を参照してください。

CPU のみを使うことはできますか?

はい、python cli_demo.py --cpu-only を実行すると、CPU のみでモデルと推論をロードします。

Qwen はストリーミングに対応していますか?

modeling_qwen.pychat_stream 関数を参照してください。

chat_stream() を使用すると、結果に文字化けが発生します。

これは、トークンがバイトを表し、単一のトークンが無意味な文字列である可能性があるためです。このようなデコード結果を避けるため、トークナイザのデフォルト設定を更新しました。コードを最新版に更新してください。

インストラクションとは関係ないようですが...

Qwen-7B ではなく Qwen-7B-Chat を読み込んでいないか確認してください。Qwen-7B はアライメントなしのベースモデルで、SFT/Chat モデルとは挙動が異なります。

量子化はサポートされていますか?

はい、量子化は bitsandbytes でサポートされています。私たちは改良版の開発に取り組んでおり、量子化されたモデルのチェックポイントをリリースする予定です。

量子化モデル実行時のエラー: importlib.metadata.PackageNotFoundError: No package metadata was found for bitsandbytes

Linux ユーザの場合は,pip install bitsandbytes を直接実行することで解決できます。Windows ユーザの場合は、python -m pip install bitsandbytes --prefer-binary --extra-index-url=https://jllllll.github.io/bitsandbytes-windows-webui を実行することができます。

長いシーケンスの処理に時間がかかる

この問題は解決しました。コードを最新版に更新することで解決します。

長いシーケンスの処理で不満足なパフォーマンス

NTK が適用されていることを確認してください。config.jsonuse_dynamc_ntkuse_logn_attntrue に設定する必要があります(デフォルトでは true)。

ファインチューニング

Qwen は SFT、あるいは RLHF に対応できますか?

今のところ、ファインチューニングや RLHF のコードは提供していません。しかし、FastChat、Firefly、LLaMA Efficient Tuningなど、いくつかのプロジェクトではファインチューニングをサポートしています。近日中に関連コードを更新する予定です。

トークナイザー

bos_id/eos_id/pad_id が見つかりません。

私たちのトレーニングでは、セパレータとパディングトークンとして <|endoftext|> のみを使用しています。bos_id、eos_id、pad_id は tokenizer.eod_id に設定できます。私たちのトークナイザーについて詳しくは、トークナイザーについてのドキュメントをご覧ください。