|
|
# ReAct Prompting 示例
|
|
|
|
|
|
本文档将介绍如何用 ReAct Prompting 技术命令千问使用工具。
|
|
|
|
|
|
本文档主要基本的原理概念介绍,并在文末附上了一些具体实现相关的 FAQ,但不含被调用插件的实际实现。如果您更喜欢一边调试实际可执行的代码、一边理解原理,可以转而阅读整合了 LangChain 常用工具的这个 [ipython notebook](https://github.com/QwenLM/Qwen-7B/blob/main/examples/langchain_tooluse.ipynb)。
|
|
|
|
|
|
此外,本文档和前述的 ipython notebook 都仅介绍单轮对话的实现。如果想了解多轮对话下的实现,可参见 [react_demo.py](https://github.com/QwenLM/Qwen-7B/blob/main/examples/react_demo.py)。
|
|
|
|
|
|
## 准备工作一:样例问题、样例工具
|
|
|
|
|
|
假设我们有如下的一个适合用工具处理的 query,以及有夸克搜索、通义万相文生图这两个工具:
|
|
|
|
|
|
```py
|
|
|
query = '现在给我画个五彩斑斓的黑。'
|
|
|
|
|
|
TOOLS = [
|
|
|
{
|
|
|
'name_for_human':
|
|
|
'夸克搜索',
|
|
|
'name_for_model':
|
|
|
'quark_search',
|
|
|
'description_for_model':
|
|
|
'夸克搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。',
|
|
|
'parameters': [{
|
|
|
'name': 'search_query',
|
|
|
'description': '搜索关键词或短语',
|
|
|
'required': True,
|
|
|
'schema': {
|
|
|
'type': 'string'
|
|
|
},
|
|
|
}],
|
|
|
},
|
|
|
{
|
|
|
'name_for_human':
|
|
|
'通义万相',
|
|
|
'name_for_model':
|
|
|
'image_gen',
|
|
|
'description_for_model':
|
|
|
'通义万相是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL',
|
|
|
'parameters': [{
|
|
|
'name': 'query',
|
|
|
'description': '中文关键词,描述了希望图像具有什么内容',
|
|
|
'required': True,
|
|
|
'schema': {
|
|
|
'type': 'string'
|
|
|
},
|
|
|
}],
|
|
|
},
|
|
|
]
|
|
|
```
|
|
|
|
|
|
## 准备工作二:ReAct 模版
|
|
|
|
|
|
我们将使用如下的 ReAct prompt 模版来激发千问使用工具的能力。
|
|
|
|
|
|
```py
|
|
|
TOOL_DESC = """{name_for_model}: Call this tool to interact with the {name_for_human} API. What is the {name_for_human} API useful for? {description_for_model} Parameters: {parameters} Format the arguments as a JSON object."""
|
|
|
|
|
|
REACT_PROMPT = """Answer the following questions as best you can. You have access to the following tools:
|
|
|
|
|
|
{tool_descs}
|
|
|
|
|
|
Use the following format:
|
|
|
|
|
|
Question: the input question you must answer
|
|
|
Thought: you should always think about what to do
|
|
|
Action: the action to take, should be one of [{tool_names}]
|
|
|
Action Input: the input to the action
|
|
|
Observation: the result of the action
|
|
|
... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
|
|
|
Thought: I now know the final answer
|
|
|
Final Answer: the final answer to the original input question
|
|
|
|
|
|
Begin!
|
|
|
|
|
|
Question: {query}"""
|
|
|
```
|
|
|
|
|
|
## 步骤一:让千问判断要调用什么工具、生成工具入参
|
|
|
|
|
|
首先我们需要根据 ReAct prompt 模版、query、工具的信息构建 prompt:
|
|
|
|
|
|
```py
|
|
|
tool_descs = []
|
|
|
tool_names = []
|
|
|
for info in TOOLS:
|
|
|
tool_descs.append(
|
|
|
TOOL_DESC.format(
|
|
|
name_for_model=info['name_for_model'],
|
|
|
name_for_human=info['name_for_human'],
|
|
|
description_for_model=info['description_for_model'],
|
|
|
parameters=json.dumps(
|
|
|
info['parameters'], ensure_ascii=False),
|
|
|
)
|
|
|
)
|
|
|
tool_names.append(info['name_for_model'])
|
|
|
tool_descs = '\n\n'.join(tool_descs)
|
|
|
tool_names = ','.join(tool_names)
|
|
|
|
|
|
prompt = REACT_PROMPT.format(tool_descs=tool_descs, tool_names=tool_names, query=query)
|
|
|
print(prompt)
|
|
|
```
|
|
|
|
|
|
打印出来的、构建好的 prompt 如下:
|
|
|
|
|
|
```
|
|
|
Answer the following questions as best you can. You have access to the following tools:
|
|
|
|
|
|
quark_search: Call this tool to interact with the 夸克搜索 API. What is the 夸克搜索 API useful for? 夸克搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。 Parameters: [{"name": "search_query", "description": "搜索关键词或短语", "required": true, "schema": {"type": "string"}}] Format the arguments as a JSON object.
|
|
|
|
|
|
image_gen: Call this tool to interact with the 通义万相 API. What is the 通义万相 API useful for? 通义万相是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL Parameters: [{"name": "query", "description": "中文关键词,描述了希望图像具有什么内容", "required": true, "schema": {"type": "string"}}] Format the arguments as a JSON object.
|
|
|
|
|
|
Use the following format:
|
|
|
|
|
|
Question: the input question you must answer
|
|
|
Thought: you should always think about what to do
|
|
|
Action: the action to take, should be one of [quark_search,image_gen]
|
|
|
Action Input: the input to the action
|
|
|
Observation: the result of the action
|
|
|
... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
|
|
|
Thought: I now know the final answer
|
|
|
Final Answer: the final answer to the original input question
|
|
|
|
|
|
Begin!
|
|
|
|
|
|
Question: 现在给我画个五彩斑斓的黑。
|
|
|
```
|
|
|
|
|
|
将这个 prompt 送入千问,并记得设置 "Observation" 为 stop word (见本文末尾的 FAQ)—— 即让千问在预测到要生成的下一个词是 "Observation" 时马上停止生成 —— 则千问在得到这个 prompt 后会生成如下的结果:
|
|
|
|
|
|
![](../assets/react_tutorial_001.png)
|
|
|
|
|
|
```
|
|
|
Thought: 我应该使用通义万相API来生成一张五彩斑斓的黑的图片。
|
|
|
Action: image_gen
|
|
|
Action Input: {"query": "五彩斑斓的黑"}
|
|
|
```
|
|
|
|
|
|
在得到这个结果后,调用千问的开发者可以通过简单的解析提取出 `{"query": "五彩斑斓的黑"}` 并基于这个解析结果调用文生图服务 —— 这部分逻辑需要开发者自行实现,或者也可以使用千问商业版,商业版本将内部集成相关逻辑。
|
|
|
|
|
|
## 步骤二:让千问根据插件返回结果继续作答
|
|
|
|
|
|
让我们假设文生图插件返回了如下结果:
|
|
|
|
|
|
```
|
|
|
{"status_code": 200, "request_id": "3d894da2-0e26-9b7c-bd90-102e5250ae03", "code": null, "message": "", "output": {"task_id": "2befaa09-a8b3-4740-ada9-4d00c2758b05", "task_status": "SUCCEEDED", "results": [{"url": "https://dashscope-result-sh.oss-cn-shanghai.aliyuncs.com/1e5e2015/20230801/1509/6b26bb83-469e-4c70-bff4-a9edd1e584f3-1.png"}], "task_metrics": {"TOTAL": 1, "SUCCEEDED": 1, "FAILED": 0}}, "usage": {"image_count": 1}}
|
|
|
```
|
|
|
|
|
|
![](../assets/wanx_colorful_black.png)
|
|
|
|
|
|
接下来,我们可以将之前首次请求千问时用的 prompt 和 调用文生图插件的结果拼接成如下的新 prompt:
|
|
|
|
|
|
```
|
|
|
Answer the following questions as best you can. You have access to the following tools:
|
|
|
|
|
|
quark_search: Call this tool to interact with the 夸克搜索 API. What is the 夸克搜索 API useful for? 夸克搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。 Parameters: [{"name": "search_query", "description": "搜索关键词或短语", "required": true, "schema": {"type": "string"}}] Format the arguments as a JSON object.
|
|
|
|
|
|
image_gen: Call this tool to interact with the 通义万相 API. What is the 通义万相 API useful for? 通义万相是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL Parameters: [{"name": "query", "description": "中文关键词,描述了希望图像具有什么内容", "required": true, "schema": {"type": "string"}}] Format the arguments as a JSON object.
|
|
|
|
|
|
Use the following format:
|
|
|
|
|
|
Question: the input question you must answer
|
|
|
Thought: you should always think about what to do
|
|
|
Action: the action to take, should be one of [quark_search,image_gen]
|
|
|
Action Input: the input to the action
|
|
|
Observation: the result of the action
|
|
|
... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
|
|
|
Thought: I now know the final answer
|
|
|
Final Answer: the final answer to the original input question
|
|
|
|
|
|
Begin!
|
|
|
|
|
|
Question: 现在给我画个五彩斑斓的黑。
|
|
|
Thought: 我应该使用通义万相API来生成一张五彩斑斓的黑的图片。
|
|
|
Action: image_gen
|
|
|
Action Input: {"query": "五彩斑斓的黑"}
|
|
|
Observation: {"status_code": 200, "request_id": "3d894da2-0e26-9b7c-bd90-102e5250ae03", "code": null, "message": "", "output": {"task_id": "2befaa09-a8b3-4740-ada9-4d00c2758b05", "task_status": "SUCCEEDED", "results": [{"url": "https://dashscope-result-sh.oss-cn-shanghai.aliyuncs.com/1e5e2015/20230801/1509/6b26bb83-469e-4c70-bff4-a9edd1e584f3-1.png"}], "task_metrics": {"TOTAL": 1, "SUCCEEDED": 1, "FAILED": 0}}, "usage": {"image_count": 1}}
|
|
|
```
|
|
|
|
|
|
用这个新的拼接了文生图插件结果的新 prompt 去调用千问,将得到如下的最终回复:
|
|
|
|
|
|
![](../assets/react_tutorial_002.png)
|
|
|
|
|
|
```
|
|
|
Thought: 我已经成功使用通义万相API生成了一张五彩斑斓的黑的图片。
|
|
|
Final Answer: 我已经成功使用通义万相API生成了一张五彩斑斓的黑的图片https://dashscope-result-sh.oss-cn-shanghai.aliyuncs.com/1e5e2015/20230801/1509/6b26bb83-469e-4c70-bff4-a9edd1e584f3-1.png。
|
|
|
```
|
|
|
|
|
|
虽然对于文生图来说,这个第二次调用千问的步骤显得多余。但是对于搜索插件、代码执行插件、计算器插件等别的插件来说,这个第二次调用千问的步骤给了千问提炼、总结插件返回结果的机会。
|
|
|
|
|
|
## FAQ
|
|
|
|
|
|
**怎么配置 "Observation" 这个 stop word?**
|
|
|
|
|
|
通过 chat 接口的 stop_words_ids 指定:
|
|
|
```py
|
|
|
react_stop_words = [
|
|
|
# tokenizer.encode('Observation'), # [37763, 367]
|
|
|
tokenizer.encode('Observation:'), # [37763, 367, 25]
|
|
|
tokenizer.encode('Observation:\n'), # [37763, 367, 510]
|
|
|
]
|
|
|
response, history = model.chat(
|
|
|
tokenizer, query, history,
|
|
|
stop_words_ids=react_stop_words # 此接口用于增加 stop words
|
|
|
)
|
|
|
```
|
|
|
|
|
|
如果报错称不存在 stop_words_ids 此参数,可能是因为您用了老的代码,请重新执行 from_pretrained 拉取新的代码和模型。
|
|
|
|
|
|
需要注意的是,当前的 tokenizer 对 `\n` 有一系列较复杂的聚合操作。比如例子中的`:\n`这两个字符便被聚合成了一个 token。因此配置 stop words 需要非常细致地预估 tokenizer 的行为。
|
|
|
|
|
|
**对 top_p 等推理参数有调参建议吗?**
|
|
|
|
|
|
通常来讲,较低的 top_p 会有更高的准确度,但会牺牲回答的多样性、且更易出现重复某个词句的现象。
|
|
|
|
|
|
可以按如下方式调整 top_p 为 0.5:
|
|
|
```py
|
|
|
model.generation_config.top_p = 0.5
|
|
|
```
|
|
|
|
|
|
特别的,可以用如下方式关闭 top-p sampling,改用 greedy sampling,效果上相当于 top_p=0 或 temperature=0:
|
|
|
```py
|
|
|
model.generation_config.do_sample = False # greedy decoding
|
|
|
```
|
|
|
|
|
|
此外,我们在 `model.chat()` 接口也提供了调整 top_p 等参数的接口。
|
|
|
|
|
|
**有解析Action、Action Input的参考代码吗?**
|
|
|
|
|
|
有的,可以参考:
|
|
|
```py
|
|
|
def parse_latest_plugin_call(text: str) -> Tuple[str, str]:
|
|
|
i = text.rfind('\nAction:')
|
|
|
j = text.rfind('\nAction Input:')
|
|
|
k = text.rfind('\nObservation:')
|
|
|
if 0 <= i < j: # If the text has `Action` and `Action input`,
|
|
|
if k < j: # but does not contain `Observation`,
|
|
|
# then it is likely that `Observation` is ommited by the LLM,
|
|
|
# because the output text may have discarded the stop word.
|
|
|
text = text.rstrip() + '\nObservation:' # Add it back.
|
|
|
k = text.rfind('\nObservation:')
|
|
|
if 0 <= i < j < k:
|
|
|
plugin_name = text[i + len('\nAction:'):j].strip()
|
|
|
plugin_args = text[j + len('\nAction Input:'):k].strip()
|
|
|
return plugin_name, plugin_args
|
|
|
return '', ''
|
|
|
```
|
|
|
|
|
|
此外,如果输出的 Action Input 内容是一段表示 JSON 对象的文本,我们建议使用 `json5` 包的 `json5.loads(...)` 方法加载。
|