|
|
# Auto Comments
|
|
|
本文档介绍Auto Comments,这是一个利用Qwen模型为代码文件自动生成注释的使用案例。
|
|
|
|
|
|
# 使用方法
|
|
|
您可以直接执行如下命令,为提供的代码文件生成注释:
|
|
|
```
|
|
|
python auto_comments.py --path 'path of file or folder'
|
|
|
```
|
|
|
|
|
|
参数:
|
|
|
- path:文件路径。可以是文件(目前支持python代码文件),也可以是文件夹(会扫描文件夹下所有python代码文件)
|
|
|
- regenerate:重新生成。默认False,如果针对同一文件需要重新生成注释,请设置为True
|
|
|
|
|
|
# 使用样例
|
|
|
- 执行:python auto_comments.py --path test_file.py
|
|
|
- test_file.py 内容为:
|
|
|
```
|
|
|
import numpy as np
|
|
|
import pandas as pd
|
|
|
import seaborn as sns
|
|
|
sns.set_theme(style="whitegrid")
|
|
|
|
|
|
rs = np.random.RandomState(365)
|
|
|
values = rs.randn(365, 4).cumsum(axis=0)
|
|
|
dates = pd.date_range("1 1 2016", periods=365, freq="D")
|
|
|
data = pd.DataFrame(values, dates, columns=["A", "B", "C", "D"])
|
|
|
data = data.rolling(7).mean()
|
|
|
|
|
|
sns.lineplot(data=data, palette="tab10", linewidth=2.5)
|
|
|
```
|
|
|
|
|
|
- 输出:test_file_comments.py(包含注释的代码文件),文件内容如下:
|
|
|
```
|
|
|
# 导入需要的库
|
|
|
import numpy as np
|
|
|
import pandas as pd
|
|
|
import seaborn as sns
|
|
|
|
|
|
# 设置 Seaborn 的主题风格为白色网格
|
|
|
sns.set_theme(style="whitegrid")
|
|
|
|
|
|
# 生成随机数
|
|
|
rs = np.random.RandomState(365)
|
|
|
|
|
|
# 生成 365 行 4 列的随机数,并按行累加
|
|
|
values = rs.randn(365, 4).cumsum(axis=0)
|
|
|
|
|
|
# 生成日期
|
|
|
dates = pd.date_range("1 1 2016", periods=365, freq="D")
|
|
|
|
|
|
# 将随机数和日期组合成 DataFrame
|
|
|
data = pd.DataFrame(values, dates, columns=["A", "B", "C", "D"])
|
|
|
|
|
|
# 对 DataFrame 进行 7 天滑动平均
|
|
|
data = data.rolling(7).mean()
|
|
|
|
|
|
# 使用 Seaborn 绘制折线图
|
|
|
sns.lineplot(data=data, palette="tab10", linewidth=2.5)
|
|
|
```
|