|
|
|
@ -483,20 +483,19 @@ async def predict(
|
|
|
|
|
current_length = 0
|
|
|
|
|
stop_words_ids = [tokenizer.encode(s)
|
|
|
|
|
for s in stop_words] if stop_words else None
|
|
|
|
|
if stop_words:
|
|
|
|
|
# TODO: It's a little bit tricky to trim stop words in the stream mode.
|
|
|
|
|
raise HTTPException(
|
|
|
|
|
status_code=400,
|
|
|
|
|
detail=
|
|
|
|
|
'Invalid request: custom stop words are not yet supported for stream mode.',
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
delay_token_num = max([len(x) for x in stop_words])
|
|
|
|
|
response_generator = model.chat_stream(tokenizer,
|
|
|
|
|
query,
|
|
|
|
|
history=history,
|
|
|
|
|
stop_words_ids=stop_words_ids,
|
|
|
|
|
system=system,
|
|
|
|
|
**gen_kwargs)
|
|
|
|
|
for new_response in response_generator:
|
|
|
|
|
for _new_response in response_generator:
|
|
|
|
|
if len(_new_response) <= delay_token_num:
|
|
|
|
|
continue
|
|
|
|
|
new_response = _new_response[:-delay_token_num]
|
|
|
|
|
|
|
|
|
|
if len(new_response) == current_length:
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
@ -510,6 +509,18 @@ async def predict(
|
|
|
|
|
object='chat.completion.chunk')
|
|
|
|
|
yield '{}'.format(_dump_json(chunk, exclude_unset=True))
|
|
|
|
|
|
|
|
|
|
if current_length != len(_new_response):
|
|
|
|
|
# Determine whether to print the delay tokens
|
|
|
|
|
delayed_text = _new_response[current_length:]
|
|
|
|
|
new_text = trim_stop_words(delayed_text, stop_words)
|
|
|
|
|
if len(new_text) > 0:
|
|
|
|
|
choice_data = ChatCompletionResponseStreamChoice(
|
|
|
|
|
index=0, delta=DeltaMessage(content=new_text), finish_reason=None)
|
|
|
|
|
chunk = ChatCompletionResponse(model=model_id,
|
|
|
|
|
choices=[choice_data],
|
|
|
|
|
object='chat.completion.chunk')
|
|
|
|
|
yield '{}'.format(_dump_json(chunk, exclude_unset=True))
|
|
|
|
|
|
|
|
|
|
choice_data = ChatCompletionResponseStreamChoice(index=0,
|
|
|
|
|
delta=DeltaMessage(),
|
|
|
|
|
finish_reason='stop')
|
|
|
|
|