update profiling result after optimizing memory cost

main
Yang An 1 year ago committed by GitHub
parent 2167406b72
commit 9404634e25
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -242,8 +242,8 @@ response, history = model.chat(tokenizer, "Hi", history=None, generation_config=
| Quantization | Speed (2048 tokens) | Speed (8192 tokens) |
| ------------- | :------------------:| :------------------:|
| BF16 | 30.53 | 28.51 |
| Int4 | 45.60 | 33.83 |
| BF16 | 30.34 | 29.32 |
| Int4 | 43.56 | 33.92 |
具体而言我们记录在长度为1的上下文的条件下生成8192个token的性能。评测运行于单张A100-SXM4-80G GPU使用PyTorch 2.0.1和CUDA 11.4。推理速度是生成8192个token的速度均值。
@ -253,8 +253,8 @@ response, history = model.chat(tokenizer, "Hi", history=None, generation_config=
| Quantization Level | Peak Usage for Encoding 2048 Tokens | Peak Usage for Generating 8192 Tokens |
| ------------------ | :---------------------------------: | :-----------------------------------: |
| BF16 | 18.99GB | 24.40GB |
| Int4 | 10.20GB | 15.61GB |
| BF16 | 17.66GB | 22.58GB |
| Int4 | 8.21GB | 13.62GB |
上述性能测算使用[此脚本](https://qianwen-res.oss-cn-beijing.aliyuncs.com/profile.py)完成。

Loading…
Cancel
Save