Merge pull request #922 from QwenLM/add_docker_cu121

Add Docker image for CUDA-12.1.
main
Ren Xuancheng 1 year ago committed by GitHub
commit 69a7eebbf5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1049,6 +1049,7 @@ To simplify the deployment process, we provide docker images with pre-built envi
1. Install the correct version of Nvidia driver depending on the image to use: 1. Install the correct version of Nvidia driver depending on the image to use:
- `qwenllm/qwen:cu117` (**recommend**): `>= 515.48.07` - `qwenllm/qwen:cu117` (**recommend**): `>= 515.48.07`
- `qwenllm/qwen:cu114` (w/o flash-attention): `>= 470.82.01` - `qwenllm/qwen:cu114` (w/o flash-attention): `>= 470.82.01`
- `qwenllm/qwen:cu121`: `>= 530.30.02`
- `qwenllm/qwen:latest`: same as `qwenllm/qwen:cu117` - `qwenllm/qwen:latest`: same as `qwenllm/qwen:cu117`
2. Install and configure [docker](https://docs.docker.com/engine/install/) and [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html): 2. Install and configure [docker](https://docs.docker.com/engine/install/) and [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html):

@ -1040,6 +1040,7 @@ print(response.choices[0].message.content)
1. 根据需要使用的镜像版本安装相应版本的Nvidia驱动 1. 根据需要使用的镜像版本安装相应版本的Nvidia驱动
- `qwenllm/qwen:cu117`**推荐**`>= 515.48.07` - `qwenllm/qwen:cu117`**推荐**`>= 515.48.07`
- `qwenllm/qwen:cu114`不支持flash-attention`>= 470.82.01` - `qwenllm/qwen:cu114`不支持flash-attention`>= 470.82.01`
- `qwenllm/qwen:cu121``>= 530.30.02`
- `qwenllm/qwen:latest`:与`qwenllm/qwen:cu117`相同 - `qwenllm/qwen:latest`:与`qwenllm/qwen:cu117`相同
2. 安装并配置[docker](https://docs.docker.com/engine/install/)和[nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) 2. 安装并配置[docker](https://docs.docker.com/engine/install/)和[nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)

@ -909,6 +909,7 @@ Para simplificar el proceso de despliegue, proporcionamos imágenes Docker con e
1. Instale la versión correcta del controlador Nvidia en función de la imagen que vaya a utilizar: 1. Instale la versión correcta del controlador Nvidia en función de la imagen que vaya a utilizar:
- `qwenllm/qwen:cu117` (**recomendado**): `>= 515.48.07` - `qwenllm/qwen:cu117` (**recomendado**): `>= 515.48.07`
- `qwenllm/qwen:cu114` (w/o flash-attention): `>= 470.82.01` - `qwenllm/qwen:cu114` (w/o flash-attention): `>= 470.82.01`
- `qwenllm/qwen:cu121`: `>= 530.30.02`
- `qwenllm/qwen:latest`: igual que `qwenllm/qwen:cu117` - `qwenllm/qwen:latest`: igual que `qwenllm/qwen:cu117`
2. Instale y configure [docker](https://docs.docker.com/engine/install/) y [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html): 2. Instale y configure [docker](https://docs.docker.com/engine/install/) y [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html):

@ -912,6 +912,7 @@ Pour simplifier le processus de déploiement, nous fournissons des images docker
1. Installez la version correcte du pilote Nvidia en fonction de l'image à utiliser : 1. Installez la version correcte du pilote Nvidia en fonction de l'image à utiliser :
- `qwenllm/qwen:cu117` (**recommandé**): `>= 515.48.07` - `qwenllm/qwen:cu117` (**recommandé**): `>= 515.48.07`
- `qwenllm/qwen:cu114` (w/o flash-attention): `>= 470.82.01` - `qwenllm/qwen:cu114` (w/o flash-attention): `>= 470.82.01`
- `qwenllm/qwen:cu121`: `>= 530.30.02`
- `qwenllm/qwen:latest`: même que `qwenllm/qwen:cu117` - `qwenllm/qwen:latest`: même que `qwenllm/qwen:cu117`
2. Installer et configurer [docker](https://docs.docker.com/engine/install/) et [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) : 2. Installer et configurer [docker](https://docs.docker.com/engine/install/) et [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) :

@ -948,6 +948,7 @@ print(response.choices[0].message.content)
1. 使用するイメージに応じて、正しいバージョンのNvidiaドライバをインストールしてください 1. 使用するイメージに応じて、正しいバージョンのNvidiaドライバをインストールしてください
- `qwenllm/qwen:cu117` (**recommend**): `>= 515.48.07` - `qwenllm/qwen:cu117` (**recommend**): `>= 515.48.07`
- `qwenllm/qwen:cu114` (w/o flash-attention): `>= 470.82.01` - `qwenllm/qwen:cu114` (w/o flash-attention): `>= 470.82.01`
- `qwenllm/qwen:cu121`: `>= 530.30.02`
- `qwenllm/qwen:latest`: same as `qwenllm/qwen:cu117` - `qwenllm/qwen:latest`: same as `qwenllm/qwen:cu117`
2. [Docker](https://docs.docker.com/engine/install/) と [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) をインストールして設定します: 2. [Docker](https://docs.docker.com/engine/install/) と [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) をインストールして設定します:

@ -0,0 +1,122 @@
ARG CUDA_VERSION=12.1.0
ARG from=nvidia/cuda:${CUDA_VERSION}-cudnn8-devel-ubuntu20.04
FROM ${from} as base
ARG from
RUN <<EOF
apt update -y && apt upgrade -y && apt install -y --no-install-recommends \
git \
git-lfs \
python3 \
python3-pip \
python3-dev \
wget \
vim \
&& rm -rf /var/lib/apt/lists/*
EOF
RUN ln -s /usr/bin/python3 /usr/bin/python
RUN git lfs install
FROM base as dev
WORKDIR /
RUN mkdir -p /data/shared/Qwen
WORKDIR /data/shared/Qwen/
# Users can also mount '/data/shared/Qwen/' to keep the data
COPY ../requirements.txt ./
COPY ../requirements_web_demo.txt ./
FROM dev as bundle_req
ARG BUNDLE_REQUIREMENTS=true
RUN <<EOF
if [ "$BUNDLE_REQUIREMENTS" = "true" ]; then
cd /data/shared/Qwen
pip3 install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu121
pip3 install -r requirements.txt
pip3 install -r requirements_web_demo.txt
pip3 install transformers==4.36.0
fi
EOF
FROM bundle_req as bundle_flash_attention
ARG BUNDLE_FLASH_ATTENTION=true
RUN <<EOF
if [ "$BUNDLE_FLASH_ATTENTION" = "true" ]; then
cd /data/shared/Qwen
test -d flash-attention || git clone -b v2.3.3 https://github.com/Dao-AILab/flash-attention
cd /data/shared/Qwen/flash-attention &&
pip3 install . &&
pip3 install csrc/layer_norm
fi
EOF
FROM bundle_flash_attention as bundle_finetune
ARG BUNDLE_FINETUNE=true
RUN <<EOF
if [ "$BUNDLE_FINETUNE" = "true" ]; then
cd /data/shared/Qwen
# Full-finetune / LoRA.
pip3 install "deepspeed==0.12.6" "peft==0.7.1"
# Q-LoRA.
apt update -y && DEBIAN_FRONTEND=noninteractive apt install -y --no-install-recommends \
libopenmpi-dev openmpi-bin \
&& rm -rf /var/lib/apt/lists/*
pip3 install "optimum==1.14.0" "auto-gptq==0.5.0" mpi4py
fi
EOF
FROM bundle_finetune as bundle_openai_api
ARG BUNDLE_OPENAI_API=true
RUN <<EOF
if [ "$BUNDLE_OPENAI_API" = "true" ]; then
cd /data/shared/Qwen
pip3 install fastapi uvicorn "openai<1.0.0" sse_starlette "pydantic<=1.10.13"
fi
EOF
FROM bundle_openai_api as bundle_vllm
ARG BUNDLE_VLLM=true
RUN <<EOF
if [ "$BUNDLE_VLLM" = "true" ]; then
cd /data/shared/Qwen
pip3 install vllm==0.2.7 "fschat[model_worker,webui]==0.2.34"
fi
EOF
FROM bundle_vllm as final
ARG from
COPY ../requirements.txt ./
COPY ../requirements_web_demo.txt ./
COPY ../cli_demo.py ./
COPY ../web_demo.py ./
COPY ../openai_api.py ./
COPY ../finetune.py ./
COPY ../utils.py ./
COPY ./examples/* ./examples/
COPY ./eval/* ./eval/
COPY ./finetune/* ./finetune/
EXPOSE 80
WORKDIR /data/shared/Qwen/
CMD ["python3", "web_demo.py", "--server-port", "80", "--server-name", "0.0.0.0", "-c", "/data/shared/Qwen/Qwen-Chat/"]

@ -272,7 +272,7 @@ def train():
local_rank = training_args.local_rank local_rank = training_args.local_rank
device_map = "auto" device_map = None
world_size = int(os.environ.get("WORLD_SIZE", 1)) world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1 ddp = world_size != 1
if lora_args.q_lora: if lora_args.q_lora:
@ -282,6 +282,19 @@ def train():
"FSDP or ZeRO3 are incompatible with QLoRA." "FSDP or ZeRO3 are incompatible with QLoRA."
) )
is_chat_model = 'chat' in model_args.model_name_or_path.lower()
if (
training_args.use_lora
and not lora_args.q_lora
and deepspeed.is_deepspeed_zero3_enabled()
and not is_chat_model
):
raise RuntimeError("ZeRO3 is incompatible with LoRA when finetuning on base model.")
model_load_kwargs = {}
if deepspeed.is_deepspeed_zero3_enabled():
model_load_kwargs['low_cpu_mem_usage'] = False
# Set RoPE scaling factor # Set RoPE scaling factor
config = transformers.AutoConfig.from_pretrained( config = transformers.AutoConfig.from_pretrained(
model_args.model_name_or_path, model_args.model_name_or_path,
@ -302,6 +315,7 @@ def train():
) )
if training_args.use_lora and lora_args.q_lora if training_args.use_lora and lora_args.q_lora
else None, else None,
**model_load_kwargs,
) )
tokenizer = transformers.AutoTokenizer.from_pretrained( tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path, model_args.model_name_or_path,
@ -314,7 +328,7 @@ def train():
tokenizer.pad_token_id = tokenizer.eod_id tokenizer.pad_token_id = tokenizer.eod_id
if training_args.use_lora: if training_args.use_lora:
if lora_args.q_lora or 'chat' in model_args.model_name_or_path.lower(): if lora_args.q_lora or is_chat_model:
modules_to_save = None modules_to_save = None
else: else:
modules_to_save = ["wte", "lm_head"] modules_to_save = ["wte", "lm_head"]

@ -18,7 +18,7 @@ NNODES=${NNODES:-1}
NODE_RANK=${NODE_RANK:-0} NODE_RANK=${NODE_RANK:-0}
# The ip address of the rank-0 worker, for single-worker training, please set to localhost # The ip address of the rank-0 worker, for single-worker training, please set to localhost
MASTER_ADDR=${MASTER_ADDR:localhost} MASTER_ADDR=${MASTER_ADDR:-localhost}
# The port for communication # The port for communication
MASTER_PORT=${MASTER_PORT:-6001} MASTER_PORT=${MASTER_PORT:-6001}

@ -18,7 +18,7 @@ NNODES=${NNODES:-1}
NODE_RANK=${NODE_RANK:-0} NODE_RANK=${NODE_RANK:-0}
# The ip address of the rank-0 worker, for single-worker training, please set to localhost # The ip address of the rank-0 worker, for single-worker training, please set to localhost
MASTER_ADDR=${MASTER_ADDR:localhost} MASTER_ADDR=${MASTER_ADDR:-localhost}
# The port for communication # The port for communication
MASTER_PORT=${MASTER_PORT:-6001} MASTER_PORT=${MASTER_PORT:-6001}

@ -18,7 +18,7 @@ NNODES=${NNODES:-1}
NODE_RANK=${NODE_RANK:-0} NODE_RANK=${NODE_RANK:-0}
# The ip address of the rank-0 worker, for single-worker training, please set to localhost # The ip address of the rank-0 worker, for single-worker training, please set to localhost
MASTER_ADDR=${MASTER_ADDR:localhost} MASTER_ADDR=${MASTER_ADDR:-localhost}
# The port for communication # The port for communication
MASTER_PORT=${MASTER_PORT:-6001} MASTER_PORT=${MASTER_PORT:-6001}

Loading…
Cancel
Save