|
|
|
@ -368,6 +368,54 @@ you can use the dequantization operation to convert the int8 key/value back to t
|
|
|
|
|
```
|
|
|
|
|
<br>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## Batch Inference
|
|
|
|
|
Qwen supports batch inference. With flash-attention enabled, using batch inference can bring a 40% speedup. The example code is shown below:
|
|
|
|
|
```
|
|
|
|
|
import torch
|
|
|
|
|
from tokenization_qwen import QWenTokenizer
|
|
|
|
|
from modeling_qwen import QWenLMHeadModel
|
|
|
|
|
from transformers import GenerationConfig
|
|
|
|
|
from qwen_generation_utils import make_context
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer = QWenTokenizer.from_pretrained('./', pad_token='<|extra_0|>', eos_token='<|endoftext|>', padding_side='left')
|
|
|
|
|
model = QWenLMHeadModel.from_pretrained('./', device_map="auto").eval()
|
|
|
|
|
model.generation_config = GenerationConfig.from_pretrained('./')
|
|
|
|
|
|
|
|
|
|
all_raw_text = ["我想听你说爱我。", "今天我想吃点啥,甜甜的,推荐下", "我马上迟到了,怎么做才能不迟到"]
|
|
|
|
|
batch_question = []
|
|
|
|
|
for q in all_raw_text:
|
|
|
|
|
raw_text, _ = make_context(
|
|
|
|
|
tokenizer,
|
|
|
|
|
q,
|
|
|
|
|
system="You are a helpful assistant.",
|
|
|
|
|
max_window_size=model.generation_config.max_window_size,
|
|
|
|
|
chat_format=model.generation_config.chat_format,
|
|
|
|
|
)
|
|
|
|
|
batch_question.append(raw_text)
|
|
|
|
|
|
|
|
|
|
batch_input_ids = tokenizer(batch_question, padding='longest')
|
|
|
|
|
print(batch_input_ids)
|
|
|
|
|
|
|
|
|
|
batch_input_ids1 = torch.LongTensor(batch_input_ids['input_ids']).to(model.device)
|
|
|
|
|
batch_out_ids = model.generate(
|
|
|
|
|
input_ids=batch_input_ids1
|
|
|
|
|
,return_dict_in_generate=False
|
|
|
|
|
)
|
|
|
|
|
batch_response = [tokenizer.decode(o, skip_special_tokens=True) for o in batch_out_ids]
|
|
|
|
|
print(batch_response)
|
|
|
|
|
|
|
|
|
|
response, _ = model.chat(tokenizer, "我想听你说爱我。", history=None)
|
|
|
|
|
print(response)
|
|
|
|
|
|
|
|
|
|
response, _ = model.chat(tokenizer, "今天我想吃点啥,甜甜的,推荐下", history=None)
|
|
|
|
|
print(response)
|
|
|
|
|
|
|
|
|
|
response, _ = model.chat(tokenizer, "我马上迟到了,怎么做才能不迟到", history=None)
|
|
|
|
|
print(response)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## Finetuning
|
|
|
|
|
|
|
|
|
|
### Usage
|
|
|
|
|