update speed profiling result after optimizing memory cost

main
Yang An 1 year ago committed by GitHub
parent a469e931ae
commit 2167406b72
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -237,8 +237,8 @@ We measured the average inference speed (tokens/s) of generating 2048 and 8192 t
| Quantization | Speed (2048 tokens) | Speed (8192 tokens) |
| -------------- | :-------------------: | :-------------------: |
| BF16 | 30.53 | 28.51 |
| Int4 | 45.60 | 33.83 |
| BF16 | 30.34 | 29.32 |
| Int4 | 43.56 | 33.92 |
In detail, the setting of profiling is generating 8192 new tokens with 1 context token. The profiling runs on a single A100-SXM4-80G GPU with PyTorch 2.0.1 and CUDA 11.4. The inference speed is averaged over the generated 8192 tokens.
@ -248,8 +248,8 @@ We also profile the peak GPU memory usage for encoding 2048 tokens as context (a
| Quantization | Peak Usage for Encoding 2048 Tokens | Peak Usage for Generating 8192 Tokens |
| -------------- | :-----------------------------------: | :-------------------------------------: |
| BF16 | 18.99GB | 24.40GB |
| Int4 | 10.20GB | 15.61GB |
| BF16 | 17.66GB | 22.58GB |
| Int4 | 8.21GB | 13.62GB |
The above speed and memory profiling are conducted using [this script](https://qianwen-res.oss-cn-beijing.aliyuncs.com/profile.py).

Loading…
Cancel
Save