You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
207 lines
8.5 KiB
Python
207 lines
8.5 KiB
Python
1 year ago
|
import os
|
||
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
import argparse
|
||
|
import datasets
|
||
|
import torch
|
||
|
import re
|
||
|
from thefuzz import process
|
||
|
from typing import List
|
||
|
from tqdm import tqdm
|
||
|
from transformers.trainer_utils import set_seed
|
||
|
|
||
|
'''
|
||
|
wget https://people.eecs.berkeley.edu/~hendrycks/data.tar
|
||
|
mkdir data/mmlu
|
||
|
mv data.tar data/mmlu
|
||
|
cd data/mmlu; tar xf data.tar
|
||
|
cd ../../
|
||
|
|
||
|
pip install thefuzz
|
||
|
python eval/evaluate_chat_mmlu.py -d data/mmlu/data/
|
||
|
'''
|
||
|
|
||
|
def load_models_tokenizer(args):
|
||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||
|
from transformers.generation import GenerationConfig
|
||
|
|
||
|
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True)
|
||
|
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True, bf16=True, use_flash_attn=True).eval()
|
||
|
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True)
|
||
|
model.generation_config.do_sample = False # use greedy decoding
|
||
|
return model, tokenizer
|
||
|
|
||
|
|
||
|
def format_example(line):
|
||
|
example = 'The following is a multiple-choice question. Please choose the most suitable one among A, B, C and D as the answer to this question.\n\n' + line['question'] + "\n"
|
||
|
for choice in choices:
|
||
|
example += f'{choice}. {line[f"{choice}"]}\n'
|
||
|
return example
|
||
|
|
||
|
|
||
|
def process_before_extraction(gen, choice_dict):
|
||
|
# replace the choice by letter in the generated sentence
|
||
|
# from longest one to shortest one
|
||
|
for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True):
|
||
|
pattern = re.compile(re.escape(val.rstrip(".")), re.IGNORECASE)
|
||
|
gen = pattern.sub(key, gen)
|
||
|
return gen
|
||
|
|
||
|
def extract_choice(gen, choice_list):
|
||
|
# answer is A | choice is A | choose A
|
||
|
res = re.search(r"(?:(?:[Cc]hoose)|(?:(?:[Aa]nswer|[Cc]hoice)(?![^ABCD]{0,20}?(?:n't|not))[^ABCD]{0,10}?\b(?:|is|:|be))\b)[^ABCD]{0,20}?\b(A|B|C|D)\b", gen)
|
||
|
|
||
|
# A is correct | A is right
|
||
|
if res is None:
|
||
|
res = re.search(r"\b(A|B|C|D)\b(?![^ABCD]{0,8}?(?:n't|not)[^ABCD]{0,5}?(?:correct|right))[^ABCD]{0,10}?\b(?:correct|right)\b", gen)
|
||
|
|
||
|
# straight answer: A
|
||
|
if res is None:
|
||
|
res = re.search(r"^(A|B|C|D)(?:\.|,|:|$)", gen)
|
||
|
|
||
|
# simply extract the first appearred letter
|
||
|
if res is None:
|
||
|
res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen)
|
||
|
|
||
|
if res is None:
|
||
|
return choices[choice_list.index(process.extractOne(gen, choice_list)[0])]
|
||
|
else:
|
||
|
return res.group(1)
|
||
|
|
||
|
def extract_answer(response, row):
|
||
|
gen = process_before_extraction(response, {choice: row[choice] for choice in choices})
|
||
|
pred = extract_choice(gen, [row[choice] for choice in choices])
|
||
|
return pred
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def eval_subject(
|
||
|
model,
|
||
|
tokenizer,
|
||
|
subject_name,
|
||
|
test_df,
|
||
|
save_result_dir=None,
|
||
|
overwrite=False,
|
||
|
**kwargs
|
||
|
):
|
||
|
result_path = os.path.join(save_result_dir, f'{subject_name}_result.csv')
|
||
|
if not overwrite and os.path.exists(result_path):
|
||
|
print(f"{result_path} existed, skip!")
|
||
|
score = []
|
||
|
for (_, datarow), (_, resultrow) in zip(test_df.iterrows(), pd.read_csv(result_path).iterrows()):
|
||
|
# pred = extract_answer(resultrow['model_response'], datarow)
|
||
|
pred = resultrow['model_output']
|
||
|
correct = 1 if pred == datarow['answer'] else 0
|
||
|
score.append(correct)
|
||
|
return score
|
||
|
|
||
|
result = []
|
||
|
score = []
|
||
|
|
||
|
for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
|
||
|
question = format_example(row)
|
||
|
|
||
|
response, history = model.chat(
|
||
|
tokenizer,
|
||
|
question,
|
||
|
history=None,
|
||
|
)
|
||
|
print(question)
|
||
|
print(response)
|
||
|
pred = extract_answer(response, row)
|
||
|
print(pred)
|
||
|
print("======================")
|
||
|
|
||
|
if 'answer' in row:
|
||
|
correct = 1 if pred == row['answer'] else 0
|
||
|
score.append(correct)
|
||
|
if args.debug: print(f'{question} pred: {pred} ref: {row["answer"]}')
|
||
|
result.append(pred)
|
||
|
|
||
|
if save_result_dir:
|
||
|
test_df['model_output'] = result
|
||
|
test_df['model_response'] = response
|
||
|
if score:
|
||
|
test_df["correctness"] = score
|
||
|
os.makedirs(save_result_dir, exist_ok=True)
|
||
|
test_df.to_csv(os.path.join(
|
||
|
save_result_dir, f'{subject_name}_result.csv'), encoding="utf-8", index=False)
|
||
|
|
||
|
return score
|
||
|
|
||
|
|
||
|
def cal_mmlu(res):
|
||
|
acc_sum_dict = dict()
|
||
|
acc_norm_sum_dict = dict()
|
||
|
cnt_dict = dict()
|
||
|
acc_sum = 0.
|
||
|
cnt = 0
|
||
|
hard_cnt = 0
|
||
|
hard_acc_sum = 0.
|
||
|
|
||
|
for class_ in TASK_NAME_MAPPING.keys():
|
||
|
acc_sum_dict[class_] = 0.
|
||
|
acc_norm_sum_dict[class_] = 0.
|
||
|
cnt_dict[class_] = 0.
|
||
|
|
||
|
for tt in TASK_NAME_MAPPING[class_]:
|
||
|
acc_sum += sum(res[tt])
|
||
|
cnt += len(res[tt])
|
||
|
|
||
|
acc_sum_dict[class_] += sum(res[tt])
|
||
|
cnt_dict[class_] += len(res[tt])
|
||
|
|
||
|
print('\n\n\n')
|
||
|
for k in TASK_NAME_MAPPING.keys():
|
||
|
if k in cnt_dict:
|
||
|
print('%s ACC: %.2f ' % (
|
||
|
k, acc_sum_dict[k] * 100 / cnt_dict[k]))
|
||
|
print('AVERAGE ACC:%.2f ' % (acc_sum *100 / cnt))
|
||
|
|
||
|
|
||
|
def main(args):
|
||
|
print("loading model weights")
|
||
|
if args.checkpoint_path is not None:
|
||
|
model, tokenizer = load_models_tokenizer(args)
|
||
|
else:
|
||
|
model, tokenizer = None, None
|
||
|
print("model loaded")
|
||
|
|
||
|
dev_result = {}
|
||
|
for subject_name in tqdm(SUBJECTS):
|
||
|
# val_file_path = os.path.join(args.eval_data_path, 'val', f'{subject_name}_val.csv')
|
||
|
# dev_file_path = os.path.join(args.eval_data_path, 'dev', f'{subject_name}_dev.csv')
|
||
|
test_file_path = os.path.join(args.eval_data_path, 'test', f'{subject_name}_test.csv')
|
||
|
# val_df = pd.read_csv(val_file_path, names=['question','A','B','C','D','answer'])
|
||
|
# dev_df = pd.read_csv(dev_file_path, names=['question','A','B','C','D','answer'])
|
||
|
test_df = pd.read_csv(test_file_path, names=['question','A','B','C','D','answer'])
|
||
|
|
||
|
score = eval_subject(model, tokenizer, subject_name, test_df, save_result_dir=f"outs_chat/mmlu_eval_result", overwrite=args.overwrite)
|
||
|
dev_result[subject_name] = score
|
||
|
cal_mmlu(dev_result)
|
||
|
|
||
|
|
||
|
TASK_NAME_MAPPING = {'stem': ['abstract_algebra', 'anatomy', 'astronomy', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_physics', 'computer_security', 'conceptual_physics', 'electrical_engineering', 'elementary_mathematics', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_mathematics', 'high_school_physics', 'high_school_statistics', 'machine_learning'],
|
||
|
'Humanities': ['formal_logic', 'high_school_european_history', 'high_school_us_history', 'high_school_world_history', 'international_law', 'jurisprudence', 'logical_fallacies', 'moral_disputes', 'moral_scenarios', 'philosophy', 'prehistory', 'professional_law', 'world_religions'],
|
||
|
'other': ['business_ethics', 'college_medicine', 'human_aging', 'management', 'marketing', 'medical_genetics', 'miscellaneous', 'nutrition', 'professional_accounting', 'professional_medicine', 'virology', 'global_facts', 'clinical_knowledge'],
|
||
|
'social': ['econometrics', 'high_school_geography', 'high_school_government_and_politics', 'high_school_macroeconomics', 'high_school_microeconomics', 'high_school_psychology', 'human_sexuality', 'professional_psychology', 'public_relations', 'security_studies', 'sociology', 'us_foreign_policy']}
|
||
|
SUBJECTS = [v for vl in TASK_NAME_MAPPING.values() for v in vl]
|
||
|
choices = ["A", "B", "C", "D"]
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
parser = argparse.ArgumentParser(description='Test HF checkpoint.')
|
||
|
parser.add_argument('-c', '--checkpoint-path', type=str, help='Checkpoint path', default="Qwen/Qwen-7B-Chat")
|
||
|
parser.add_argument('-s', '--seed', type=int, default=1234, help='Random seed')
|
||
|
|
||
|
"""Provide extra arguments required for tasks."""
|
||
|
group = parser.add_argument_group(title='Evaluation options')
|
||
|
group.add_argument('-d', '--eval_data_path', type=str,
|
||
|
help='Path to eval data')
|
||
|
group.add_argument("--debug", action='store_true', default=False,
|
||
|
help='Print infos.')
|
||
|
group.add_argument("--overwrite", action='store_true', default=False,
|
||
|
help='Overwrite existed results')
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
set_seed(args.seed)
|
||
|
|
||
|
main(args)
|