add evaluation code for Qwen-7B-Chat

main
feihu.hf 2 years ago
parent 19474456d8
commit 1134e08be7

@ -0,0 +1,290 @@
import os
import pandas as pd
import numpy as np
import argparse
import datasets
import torch
import re
from thefuzz import process
from typing import List
from tqdm import tqdm
from transformers.trainer_utils import set_seed
'''
wget https://huggingface.co/datasets/ceval/ceval-exam/resolve/main/ceval-exam.zip
mkdir data/ceval
mv ceval-exam.zip data/ceval
cd data/ceval; unzip ceval-exam.zip
cd ../../
pip install thefuzz
python eval/evaluate_chat_ceval.py -d data/ceval
'''
def load_models_tokenizer(args):
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True, bf16=True, use_flash_attn=True).eval()
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True)
model.generation_config.do_sample = False # use greedy decoding
return model, tokenizer
def process_before_extraction(gen, question, choice_dict):
# Example Prompt:
# 关于传输层的面向连接服务的特性是____。
# A. 既不保证可靠,也不保证按序交付
# B. 不保证可靠,但保证按序交付
# C. 保证可靠,但不保证按序交付
# D. 既保证可靠,也保证按序交付
# Example Model Output
# 关于传输层的面向连接服务的特性是既保证可靠,也保证按序交付
# Processed Output:
# 答案是D
question_split = question.rstrip("").split("")[-1].split("_")
# replacing the question
if len(question_split[0].strip()) > 4:
gen = gen.replace(question_split[0], "答案是")
if len(question_split[-1].strip()) > 4:
gen = gen.replace(question_split[-1], "")
# replace the choice by letter in the generated sentence
# from longest one to shortest one
for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True):
gen = gen.replace(val.rstrip(""), key)
return gen
def count_substr(gen, pattern):
return len(re.findall(pattern, gen))
def extract_choice(gen, prompt, choice_list):
# 答案是A | 选项是A | 应该选A选项
res = re.search(r"(?:(?:选|选择|选定)|(?:(?:答案|选项)(?![^ABCD]{0,10}?(?:不|非)[^ABCD]{0,10}?(?:是|为||:|】))[^ABCD]{0,10}?(?:是|为||:|】))[^ABCD]{0,10}?)(A|B|C|D)(?:选项)?(?:\)|。|\.||,||、|A|B|C|D|$)", gen)
# A选项正确 | A选项符合题意
if res is None:
res = re.search(r"(A|B|C|D)(?:选?项)?(?![^ABCD]{0,4}?(?:不|非)[^ABCD]{0,4}?(?:正确|对|符合))[^ABCD]{0,4}?(?:正确|对|符合)", gen)
# 直接输出 A
if res is None:
res = re.search(r"^(A|B|C|D)(?:。|\.||,||$)", gen)
# 获取第一个出现的字母
if res is None:
res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen)
if res is None:
return choices[choice_list.index(process.extractOne(gen, choice_list)[0])]
else:
return res.group(1)
def format_example(line):
example = line['question'] + "\n\n"
for choice in choices:
example += f'{choice}. {line[f"{choice}"]}\n'
return example
def extract_answer(response, row):
prompt = row['question']
gen = process_before_extraction(response, prompt, {choice: row[choice] for choice in choices})
if not isinstance(prompt, str):
prompt = prompt[0]
pred = extract_choice(gen, prompt, [row[choice] for choice in choices])
return pred
@torch.no_grad()
def eval_subject(
model,
tokenizer,
subject_name,
test_df,
save_result_dir=None,
overwrite=False,
**kwargs
):
result_path = os.path.join(save_result_dir, f'{subject_name}_result.csv')
if not overwrite and os.path.exists(result_path):
print(f"{result_path} existed, skip!")
score = []
for (_, datarow), (_, resultrow) in zip(test_df.iterrows(), pd.read_csv(result_path).iterrows()):
pred = extract_answer(resultrow['model_response'], datarow)
correct = 1 if pred == datarow['answer'] else 0
score.append(correct)
correct_ratio = 100 * sum(score) / len(score)
return correct_ratio
responses = []
result = []
score = []
for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
question = format_example(row)
response, history = model.chat(
tokenizer,
question,
history=None,
)
print(question)
print(response)
pred = extract_answer(response, row)
print(pred)
print("======================")
if 'answer' in row:
correct = 1 if pred == row['answer'] else 0
score.append(correct)
if args.debug: print(f'{question} pred: {pred} ref: {row["answer"]}')
responses.append(response)
result.append(pred)
if score:
correct_ratio = 100 * sum(score) / len(score)
if args.debug: print(subject_name, correct_ratio)
else:
correct_ratio = 0
if save_result_dir:
test_df['model_response'] = responses
test_df['model_output'] = result
if score:
test_df["correctness"] = score
os.makedirs(save_result_dir, exist_ok=True)
test_df.to_csv(result_path, encoding="utf-8", index=False)
return correct_ratio
def cal_ceval(res):
acc_sum_dict = dict()
acc_norm_sum_dict = dict()
cnt_dict = dict()
acc_sum = 0.
cnt = 0
hard_cnt = 0
hard_acc_sum = 0.
for tt in res.keys():
name = tt.split('-')[-1]
acc_sum += float(res[tt])
cnt += 1
class_ = TASK_NAME_MAPPING[name][2]
if class_ not in acc_sum_dict:
acc_sum_dict[class_] = 0.
acc_norm_sum_dict[class_] = 0.
cnt_dict[class_] = 0.
if name in hard_list:
hard_cnt += 1
hard_acc_sum += float(res[tt])
acc_sum_dict[class_] += float(res[tt])
cnt_dict[class_] += 1
print('\n\n\n')
for k in ['STEM', 'Social Science', 'Humanities', 'Other']:
if k in cnt_dict:
print('%s acc: %.2f ' % (
k, acc_sum_dict[k] / cnt_dict[k]))
if hard_cnt > 0:
print('Hard acc:%.2f ' % (hard_acc_sum / hard_cnt))
print('AVERAGE acc:%.2f ' % (acc_sum / cnt))
TASK_NAME_MAPPING = {
"computer_network": ["Computer Network", "\u8ba1\u7b97\u673a\u7f51\u7edc", "STEM"],
"operating_system": ["Operating System", "\u64cd\u4f5c\u7cfb\u7edf", "STEM"],
"computer_architecture": ["Computer Architecture", "\u8ba1\u7b97\u673a\u7ec4\u6210", "STEM"],
"college_programming": ["College Programming", "\u5927\u5b66\u7f16\u7a0b", "STEM"],
"college_physics": ["College Physics", "\u5927\u5b66\u7269\u7406", "STEM"],
"college_chemistry": ["College Chemistry", "\u5927\u5b66\u5316\u5b66", "STEM"],
"advanced_mathematics": ["Advanced Mathematics", "\u9ad8\u7b49\u6570\u5b66", "STEM"],
"probability_and_statistics": ["Probability and Statistics", "\u6982\u7387\u7edf\u8ba1", "STEM"],
"discrete_mathematics": ["Discrete Mathematics", "\u79bb\u6563\u6570\u5b66", "STEM"],
"electrical_engineer": ["Electrical Engineer", "\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08", "STEM"],
"metrology_engineer": ["Metrology Engineer", "\u6ce8\u518c\u8ba1\u91cf\u5e08", "STEM"],
"high_school_mathematics": ["High School Mathematics", "\u9ad8\u4e2d\u6570\u5b66", "STEM"],
"high_school_physics": ["High School Physics", "\u9ad8\u4e2d\u7269\u7406", "STEM"],
"high_school_chemistry": ["High School Chemistry", "\u9ad8\u4e2d\u5316\u5b66", "STEM"],
"high_school_biology": ["High School Biology", "\u9ad8\u4e2d\u751f\u7269", "STEM"],
"middle_school_mathematics": ["Middle School Mathematics", "\u521d\u4e2d\u6570\u5b66", "STEM"],
"middle_school_biology": ["Middle School Biology", "\u521d\u4e2d\u751f\u7269", "STEM"],
"middle_school_physics": ["Middle School Physics", "\u521d\u4e2d\u7269\u7406", "STEM"],
"middle_school_chemistry": ["Middle School Chemistry", "\u521d\u4e2d\u5316\u5b66", "STEM"],
"veterinary_medicine": ["Veterinary Medicine", "\u517d\u533b\u5b66", "STEM"],
"college_economics": ["College Economics", "\u5927\u5b66\u7ecf\u6d4e\u5b66", "Social Science"],
"business_administration": ["Business Administration", "\u5de5\u5546\u7ba1\u7406", "Social Science"],
"marxism": ["Marxism", "\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406", "Social Science"],
"mao_zedong_thought": ["Mao Zedong Thought", "\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba", "Social Science"],
"education_science": ["Education Science", "\u6559\u80b2\u5b66", "Social Science"],
"teacher_qualification": ["Teacher Qualification", "\u6559\u5e08\u8d44\u683c", "Social Science"],
"high_school_politics": ["High School Politics", "\u9ad8\u4e2d\u653f\u6cbb", "Social Science"],
"high_school_geography": ["High School Geography", "\u9ad8\u4e2d\u5730\u7406", "Social Science"],
"middle_school_politics": ["Middle School Politics", "\u521d\u4e2d\u653f\u6cbb", "Social Science"],
"middle_school_geography": ["Middle School Geography", "\u521d\u4e2d\u5730\u7406", "Social Science"],
"modern_chinese_history": ["Modern Chinese History", "\u8fd1\u4ee3\u53f2\u7eb2\u8981", "Humanities"],
"ideological_and_moral_cultivation": ["Ideological and Moral Cultivation", "\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840", "Humanities"],
"logic": ["Logic", "\u903b\u8f91\u5b66", "Humanities"],
"law": ["Law", "\u6cd5\u5b66", "Humanities"],
"chinese_language_and_literature": ["Chinese Language and Literature", "\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66", "Humanities"],
"art_studies": ["Art Studies", "\u827a\u672f\u5b66", "Humanities"],
"professional_tour_guide": ["Professional Tour Guide", "\u5bfc\u6e38\u8d44\u683c", "Humanities"],
"legal_professional": ["Legal Professional", "\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c", "Humanities"],
"high_school_chinese": ["High School Chinese", "\u9ad8\u4e2d\u8bed\u6587", "Humanities"],
"high_school_history": ["High School History", "\u9ad8\u4e2d\u5386\u53f2", "Humanities"],
"middle_school_history": ["Middle School History", "\u521d\u4e2d\u5386\u53f2", "Humanities"],
"civil_servant": ["Civil Servant", "\u516c\u52a1\u5458", "Other"],
"sports_science": ["Sports Science", "\u4f53\u80b2\u5b66", "Other"],
"plant_protection": ["Plant Protection", "\u690d\u7269\u4fdd\u62a4", "Other"],
"basic_medicine": ["Basic Medicine", "\u57fa\u7840\u533b\u5b66", "Other"],
"clinical_medicine": ["Clinical Medicine", "\u4e34\u5e8a\u533b\u5b66", "Other"],
"urban_and_rural_planner": ["Urban and Rural Planner", "\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08", "Other"],
"accountant": ["Accountant", "\u6ce8\u518c\u4f1a\u8ba1\u5e08", "Other"],
"fire_engineer": ["Fire Engineer", "\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08", "Other"],
"environmental_impact_assessment_engineer": ["Environmental Impact Assessment Engineer", "\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08", "Other"],
"tax_accountant": ["Tax Accountant", "\u7a0e\u52a1\u5e08", "Other"],
"physician": ["Physician", "\u533b\u5e08\u8d44\u683c", "Other"]
}
hard_list = ['advanced_mathematics', 'discrete_mathematics', 'probability_and_statistics', 'college_physics', 'college_chemistry', 'high_school_mathematics', 'high_school_physics', 'high_school_chemistry']
choices = ["A", "B", "C", "D"]
def main(args):
print("loading model weights")
if args.checkpoint_path:
model, tokenizer = load_models_tokenizer(args)
else:
model, tokenizer = None, None
print("model loaded")
dev_result = {}
for subject_name in tqdm(TASK_NAME_MAPPING.keys()):
val_file_path = os.path.join(args.eval_data_path, 'val', f'{subject_name}_val.csv')
# dev_file_path = os.path.join(args.eval_data_path, 'dev', f'{subject_name}_dev.csv')
# test_file_path = os.path.join(args.eval_data_path, 'test', f'{subject_name}_test.csv')
val_df = pd.read_csv(val_file_path)
# dev_df = pd.read_csv(dev_file_path)
# test_df = pd.read_csv(test_file_path)
score = eval_subject(model, tokenizer, subject_name, val_df,
save_result_dir=f"outs_chat/ceval_eval_result", overwrite=args.overwrite)
dev_result[subject_name] = score
cal_ceval(dev_result)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Test HF checkpoint.')
parser.add_argument('-c', '--checkpoint-path', type=str, help='Checkpoint path', default="Qwen/Qwen-7B-Chat")
parser.add_argument('-s', '--seed', type=int, default=1234, help='Random seed')
"""Provide extra arguments required for tasks."""
group = parser.add_argument_group(title='Evaluation options')
group.add_argument('-d', '--eval_data_path', type=str, required=True,
help='Path to eval data')
group.add_argument("--debug", action='store_true', default=False,
help='Print infos.')
group.add_argument("--overwrite", action='store_true', default=False,
help='Overwrite existed results')
args = parser.parse_args()
set_seed(args.seed)
main(args)

@ -0,0 +1,137 @@
import random
import tqdm
import os
import re
import sys
import torch
import numpy as np
import jsonlines
import argparse
import json
from pathlib import Path
from datasets import load_from_disk,load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
'''
python eval/evaluate_chat_gsm8k.py [--use-fewshot]
'''
INVALID_ANS = "[invalid]"
DEVICE = "cuda:0"
def doc_to_text(doc, use_fewshot):
if use_fewshot:
context = "Question: Angelo and Melanie want to plan how many hours over the next week they should study together for their test next week. They have 2 chapters of their textbook to study and 4 worksheets to memorize. They figure out that they should dedicate 3 hours to each chapter of their textbook and 1.5 hours for each worksheet. If they plan to study no more than 4 hours each day, how many days should they plan to study total over the next week if they take a 10-minute break every hour, include 3 10-minute snack breaks each day, and 30 minutes for lunch each day?\nLet's think step by step\n" \
"Angelo and Melanie think they should dedicate 3 hours to each of the 2 chapters, 3 hours x 2 chapters = 6 hours total.\nFor the worksheets they plan to dedicate 1.5 hours for each worksheet, 1.5 hours x 4 worksheets = 6 hours total.\nAngelo and Melanie need to start with planning 12 hours to study, at 4 hours a day, 12 / 4 = 3 days.\nHowever, they need to include time for breaks and lunch. Every hour they want to include a 10-minute break, so 12 total hours x 10 minutes = 120 extra minutes for breaks.\nThey also want to include 3 10-minute snack breaks, 3 x 10 minutes = 30 minutes.\nAnd they want to include 30 minutes for lunch each day, so 120 minutes for breaks + 30 minutes for snack breaks + 30 minutes for lunch = 180 minutes, or 180 / 60 minutes per hour = 3 extra hours.\nSo Angelo and Melanie want to plan 12 hours to study + 3 hours of breaks = 15 hours total.\nThey want to study no more than 4 hours each day, 15 hours / 4 hours each day = 3.75\nThey will need to plan to study 4 days to allow for all the time they need.\nThe answer is 4\n\n" \
"Question: Mark's basketball team scores 25 2 pointers, 8 3 pointers and 10 free throws. Their opponents score double the 2 pointers but half the 3 pointers and free throws. What's the total number of points scored by both teams added together?\nLet's think step by step\n" \
"Mark's team scores 25 2 pointers, meaning they scored 25*2= 50 points in 2 pointers.\nHis team also scores 6 3 pointers, meaning they scored 8*3= 24 points in 3 pointers\nThey scored 10 free throws, and free throws count as one point so they scored 10*1=10 points in free throws.\nAll together his team scored 50+24+10= 84 points\nMark's opponents scored double his team's number of 2 pointers, meaning they scored 50*2=100 points in 2 pointers.\nHis opponents scored half his team's number of 3 pointers, meaning they scored 24/2= 12 points in 3 pointers.\nThey also scored half Mark's team's points in free throws, meaning they scored 10/2=5 points in free throws.\nAll together Mark's opponents scored 100+12+5=117 points\nThe total score for the game is both team's scores added together, so it is 84+117=201 points\nThe answer is 201\n\n" \
"Question: Bella has two times as many marbles as frisbees. She also has 20 more frisbees than deck cards. If she buys 2/5 times more of each item, what would be the total number of the items she will have if she currently has 60 marbles?\nLet's think step by step\n" \
"When Bella buys 2/5 times more marbles, she'll have increased the number of marbles by 2/5*60 = 24\nThe total number of marbles she'll have is 60+24 = 84\nIf Bella currently has 60 marbles, and she has two times as many marbles as frisbees, she has 60/2 = 30 frisbees.\nIf Bella buys 2/5 times more frisbees, she'll have 2/5*30 = 12 more frisbees.\nThe total number of frisbees she'll have will increase to 30+12 = 42\nBella also has 20 more frisbees than deck cards, meaning she has 30-20 = 10 deck cards\nIf she buys 2/5 times more deck cards, she'll have 2/5*10 = 4 more deck cards.\nThe total number of deck cards she'll have is 10+4 = 14\nTogether, Bella will have a total of 14+42+84 = 140 items\nThe answer is 140\n\n" \
"Question: A group of 4 fruit baskets contains 9 apples, 15 oranges, and 14 bananas in the first three baskets and 2 less of each fruit in the fourth basket. How many fruits are there?\nLet's think step by step\n" \
"For the first three baskets, the number of apples and oranges in one basket is 9+15=24\nIn total, together with bananas, the number of fruits in one basket is 24+14=38 for the first three baskets.\nSince there are three baskets each having 38 fruits, there are 3*38=114 fruits in the first three baskets.\nThe number of apples in the fourth basket is 9-2=7\nThere are also 15-2=13 oranges in the fourth basket\nThe combined number of oranges and apples in the fourth basket is 13+7=20\nThe fourth basket also contains 14-2=12 bananas.\nIn total, the fourth basket has 20+12=32 fruits.\nThe four baskets together have 32+114=146 fruits.\nThe answer is 146\n\n" \
f"Question: {doc['question']}\nLet's think step by step"
else:
context = doc['question']
return context
def decode(tokens_list, tokenizer, raw_text_len):
sents = []
# print(len(tokens_list))
for tokens in tokens_list:
tokens = tokens.cpu().numpy().tolist()
sent = tokenizer.tokenizer.decode(
tokens[raw_text_len:])
sent = sent.split('<|endoftext|>')[0]
sent = sent.split('\n\n\n')[0]
sent = sent.split("\n\n")[0]
sent = sent.split("Question:")[0]
sents.append(sent)
return sents
def generate_sample(model, tokenizer, question):
response, history = model.chat(
tokenizer,
question,
history=None,
)
print(question)
print("-------------")
print(response)
print("=============")
return response
def extract_answer_hf(completion):
def _get_last_digit(s):
_PAT_LAST_DIGIT = re.compile(r"(?<=(\s|[\$%#{]))([+-])?(?=(\S))(0|([1-9](\d*|\d{0,2}(,\d{3})*)))?(\.\d*[1-9])?(?=(\s|[.,}]|$))")
match = list(_PAT_LAST_DIGIT.finditer(s))
if match:
last_digit = match[-1].group().replace(",", "").replace("+", "")
# print(f"The last digit in {s} is {last_digit}")
else:
last_digit = None
print(f"No digits found in {s!r}")
return last_digit
job_gen = completion.strip('.').replace('\n', '\\n')
last_digit = _get_last_digit(job_gen)
if last_digit is not None:
return eval(last_digit)
else:
return INVALID_ANS
def extract_answer(completion):
try:
last_number = re.findall(r'\d+', completion)[-1]
return eval(last_number)
except:
return INVALID_ANS
def is_correct( completion, answer):
gold = extract_answer(answer)
assert gold != INVALID_ANS, "No ground truth answer found in the document."
return extract_answer(completion) == gold
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Test HF checkpoint.')
parser.add_argument("-c", "--checkpoint-path", type=Path, help="Checkpoint path", default="Qwen/Qwen-7B-Chat")
parser.add_argument("-f","--sample-input-file", type=str, default=None)
parser.add_argument("-o","--sample-output-file", type=str, default="gsm8k_res.jsonl")
parser.add_argument("--use-fewshot", action="store_true")
args = parser.parse_args()
if args.sample_input_file is not None:
dataset = load_from_disk(args.sample_input_file)# or:
else:
dataset = load_dataset("gsm8k", "main")
print('Loading tokenizer ...')
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True, bf16=True, use_flash_attn=True)
print('Loading model ...')
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True).eval()
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True)
model.generation_config.do_sample = False # use greedy decoding
test = dataset["test"]
f_output = open(args.sample_output_file, 'w', encoding='utf-8')
tot_length = test.num_rows
acc_res = []
for doc in tqdm.tqdm(test):
context = doc_to_text(doc, args.use_fewshot)
print(context)
completion = generate_sample(model, tokenizer, context)
answer = doc["answer"]
acc = is_correct(completion, answer)
doc["completion"] = completion
doc["acc"] = acc
f_output.write(json.dumps(doc, ensure_ascii=False) + "\n")
f_output.flush()
acc_res.append(acc)
f_output.close()
print("4-shot Acc: " if args.use_fewshot else "Zero-shot Acc", np.mean(acc_res))

@ -0,0 +1,82 @@
import random
import tqdm
import os
import sys
import torch
import jsonlines
import argparse
import jsonlines
from pathlib import Path
import re
import textwrap
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
"""
Get the HumanEval.jsonl file from [here](https://github.com/openai/human-eval/tree/master/data)
python eval/evaluate_chat_humaneval.py -f HumanEval.jsonl -o HumanEval_res.jsonl
git clone https://github.com/openai/human-eval
pip install -e human-eval
evaluate_functional_correctness HumanEval_res.jsonl
"""
DEVICE = "cuda:0"
def extract_code(text, entry_point):
# 正则表达式匹配代码块
code_block_pattern = re.compile(rf"```(?:[Pp]ython\n)?.*?def\s+{entry_point}.*?:\n(.*?)\n```", re.DOTALL)
code_block = code_block_pattern.search(text)
if code_block is None:
code_block_pattern = re.compile(rf"def\s+{entry_point}.*?:\n(.*?)(?:\n(?!\n*(?: |\t))|$)", re.DOTALL)
code_block = code_block_pattern.search(text)
if code_block is None:
code_block_pattern = re.compile(rf"def.*?:\n(.*?)(?:\n(?!\n*(?: |\t))|$)", re.DOTALL)
code_block = code_block_pattern.search(text)
if code_block is not None:
return code_block.group(1)
else:
# if no code block is found, assume the LM is simply filling the code
return textwrap.indent(text, ' ' * 4)
def generate_sample(model, tokenizer, question, entry_point):
response, history = model.chat(
tokenizer,
question,
history=None,
)
print(question)
print(response)
answer = extract_code(response, entry_point)
return answer, response
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Test HF checkpoint.')
parser.add_argument("-c", "--checkpoint-path", type=Path, help='Checkpoint path', default="Qwen/Qwen-7B-Chat")
parser.add_argument("-f","--sample-input-file", type=str, default=None, help="data path to HumanEval.jsonl")
parser.add_argument("-o","--sample-output-file", type=str, default="HumanEval_res.jsonl")
args = parser.parse_args()
print('Loading tokenizer ...')
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True)
print('Loading model ...')
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True, bf16=True, use_flash_attn=True).eval()
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True)
model.generation_config.do_sample = False # use greedy decoding
f_output = jsonlines.Writer(open(args.sample_output_file, 'w', encoding='utf-8'))
f = jsonlines.open(args.sample_input_file)
with f_output as output:
for jobj in tqdm.tqdm(f, desc='task_idx'):
prompt = "Help me fill the following code.\n" + jobj['prompt']
task_id = jobj['task_id']
answer, response = generate_sample(model, tokenizer, prompt, jobj['entry_point'])
gen_jobjs = {'task_id': task_id, "completion": answer, 'response': response}
output.write(gen_jobjs)
f_output.close()

@ -0,0 +1,207 @@
import os
import pandas as pd
import numpy as np
import argparse
import datasets
import torch
import re
from thefuzz import process
from typing import List
from tqdm import tqdm
from transformers.trainer_utils import set_seed
'''
wget https://people.eecs.berkeley.edu/~hendrycks/data.tar
mkdir data/mmlu
mv data.tar data/mmlu
cd data/mmlu; tar xf data.tar
cd ../../
pip install thefuzz
python eval/evaluate_chat_mmlu.py -d data/mmlu/data/
'''
def load_models_tokenizer(args):
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True, bf16=True, use_flash_attn=True).eval()
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True)
model.generation_config.do_sample = False # use greedy decoding
return model, tokenizer
def format_example(line):
example = 'The following is a multiple-choice question. Please choose the most suitable one among A, B, C and D as the answer to this question.\n\n' + line['question'] + "\n"
for choice in choices:
example += f'{choice}. {line[f"{choice}"]}\n'
return example
def process_before_extraction(gen, choice_dict):
# replace the choice by letter in the generated sentence
# from longest one to shortest one
for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True):
pattern = re.compile(re.escape(val.rstrip(".")), re.IGNORECASE)
gen = pattern.sub(key, gen)
return gen
def extract_choice(gen, choice_list):
# answer is A | choice is A | choose A
res = re.search(r"(?:(?:[Cc]hoose)|(?:(?:[Aa]nswer|[Cc]hoice)(?![^ABCD]{0,20}?(?:n't|not))[^ABCD]{0,10}?\b(?:|is|:|be))\b)[^ABCD]{0,20}?\b(A|B|C|D)\b", gen)
# A is correct | A is right
if res is None:
res = re.search(r"\b(A|B|C|D)\b(?![^ABCD]{0,8}?(?:n't|not)[^ABCD]{0,5}?(?:correct|right))[^ABCD]{0,10}?\b(?:correct|right)\b", gen)
# straight answer: A
if res is None:
res = re.search(r"^(A|B|C|D)(?:\.|,|:|$)", gen)
# simply extract the first appearred letter
if res is None:
res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen)
if res is None:
return choices[choice_list.index(process.extractOne(gen, choice_list)[0])]
else:
return res.group(1)
def extract_answer(response, row):
gen = process_before_extraction(response, {choice: row[choice] for choice in choices})
pred = extract_choice(gen, [row[choice] for choice in choices])
return pred
@torch.no_grad()
def eval_subject(
model,
tokenizer,
subject_name,
test_df,
save_result_dir=None,
overwrite=False,
**kwargs
):
result_path = os.path.join(save_result_dir, f'{subject_name}_result.csv')
if not overwrite and os.path.exists(result_path):
print(f"{result_path} existed, skip!")
score = []
for (_, datarow), (_, resultrow) in zip(test_df.iterrows(), pd.read_csv(result_path).iterrows()):
# pred = extract_answer(resultrow['model_response'], datarow)
pred = resultrow['model_output']
correct = 1 if pred == datarow['answer'] else 0
score.append(correct)
return score
result = []
score = []
for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
question = format_example(row)
response, history = model.chat(
tokenizer,
question,
history=None,
)
print(question)
print(response)
pred = extract_answer(response, row)
print(pred)
print("======================")
if 'answer' in row:
correct = 1 if pred == row['answer'] else 0
score.append(correct)
if args.debug: print(f'{question} pred: {pred} ref: {row["answer"]}')
result.append(pred)
if save_result_dir:
test_df['model_output'] = result
test_df['model_response'] = response
if score:
test_df["correctness"] = score
os.makedirs(save_result_dir, exist_ok=True)
test_df.to_csv(os.path.join(
save_result_dir, f'{subject_name}_result.csv'), encoding="utf-8", index=False)
return score
def cal_mmlu(res):
acc_sum_dict = dict()
acc_norm_sum_dict = dict()
cnt_dict = dict()
acc_sum = 0.
cnt = 0
hard_cnt = 0
hard_acc_sum = 0.
for class_ in TASK_NAME_MAPPING.keys():
acc_sum_dict[class_] = 0.
acc_norm_sum_dict[class_] = 0.
cnt_dict[class_] = 0.
for tt in TASK_NAME_MAPPING[class_]:
acc_sum += sum(res[tt])
cnt += len(res[tt])
acc_sum_dict[class_] += sum(res[tt])
cnt_dict[class_] += len(res[tt])
print('\n\n\n')
for k in TASK_NAME_MAPPING.keys():
if k in cnt_dict:
print('%s ACC: %.2f ' % (
k, acc_sum_dict[k] * 100 / cnt_dict[k]))
print('AVERAGE ACC:%.2f ' % (acc_sum *100 / cnt))
def main(args):
print("loading model weights")
if args.checkpoint_path is not None:
model, tokenizer = load_models_tokenizer(args)
else:
model, tokenizer = None, None
print("model loaded")
dev_result = {}
for subject_name in tqdm(SUBJECTS):
# val_file_path = os.path.join(args.eval_data_path, 'val', f'{subject_name}_val.csv')
# dev_file_path = os.path.join(args.eval_data_path, 'dev', f'{subject_name}_dev.csv')
test_file_path = os.path.join(args.eval_data_path, 'test', f'{subject_name}_test.csv')
# val_df = pd.read_csv(val_file_path, names=['question','A','B','C','D','answer'])
# dev_df = pd.read_csv(dev_file_path, names=['question','A','B','C','D','answer'])
test_df = pd.read_csv(test_file_path, names=['question','A','B','C','D','answer'])
score = eval_subject(model, tokenizer, subject_name, test_df, save_result_dir=f"outs_chat/mmlu_eval_result", overwrite=args.overwrite)
dev_result[subject_name] = score
cal_mmlu(dev_result)
TASK_NAME_MAPPING = {'stem': ['abstract_algebra', 'anatomy', 'astronomy', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_physics', 'computer_security', 'conceptual_physics', 'electrical_engineering', 'elementary_mathematics', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_mathematics', 'high_school_physics', 'high_school_statistics', 'machine_learning'],
'Humanities': ['formal_logic', 'high_school_european_history', 'high_school_us_history', 'high_school_world_history', 'international_law', 'jurisprudence', 'logical_fallacies', 'moral_disputes', 'moral_scenarios', 'philosophy', 'prehistory', 'professional_law', 'world_religions'],
'other': ['business_ethics', 'college_medicine', 'human_aging', 'management', 'marketing', 'medical_genetics', 'miscellaneous', 'nutrition', 'professional_accounting', 'professional_medicine', 'virology', 'global_facts', 'clinical_knowledge'],
'social': ['econometrics', 'high_school_geography', 'high_school_government_and_politics', 'high_school_macroeconomics', 'high_school_microeconomics', 'high_school_psychology', 'human_sexuality', 'professional_psychology', 'public_relations', 'security_studies', 'sociology', 'us_foreign_policy']}
SUBJECTS = [v for vl in TASK_NAME_MAPPING.values() for v in vl]
choices = ["A", "B", "C", "D"]
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Test HF checkpoint.')
parser.add_argument('-c', '--checkpoint-path', type=str, help='Checkpoint path', default="Qwen/Qwen-7B-Chat")
parser.add_argument('-s', '--seed', type=int, default=1234, help='Random seed')
"""Provide extra arguments required for tasks."""
group = parser.add_argument_group(title='Evaluation options')
group.add_argument('-d', '--eval_data_path', type=str,
help='Path to eval data')
group.add_argument("--debug", action='store_true', default=False,
help='Print infos.')
group.add_argument("--overwrite", action='store_true', default=False,
help='Overwrite existed results')
args = parser.parse_args()
set_seed(args.seed)
main(args)
Loading…
Cancel
Save