You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Isekai-Qwen/eval/evaluate_chat_humaneval.py

130 lines
4.1 KiB
Python

import re
import textwrap
import argparse
from pathlib import Path
import tqdm
import jsonlines
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
"""
Get the HumanEval.jsonl file from [here](https://github.com/openai/human-eval/tree/master/data)
python eval/evaluate_chat_humaneval.py -f HumanEval.jsonl -o HumanEval_res.jsonl
git clone https://github.com/openai/human-eval
pip install -e human-eval
evaluate_functional_correctness HumanEval_res.jsonl
"""
DEVICE = "cuda:0"
def extract_code(text, entry_point):
# 正则表达式匹配代码块
code_block_pattern = re.compile(
rf"```(?:[Pp]ython\n)?.*?def\s+{entry_point}.*?:\n(.*?)\n```", re.DOTALL
)
code_block = code_block_pattern.search(text)
if code_block is None:
code_block_pattern = re.compile(
rf"def\s+{entry_point}.*?:\n(.*?)(?:\n(?!\n*(?: |\t))|$)", re.DOTALL
)
code_block = code_block_pattern.search(text)
if code_block is None:
code_block_pattern = re.compile(
r"def.*?:\n(.*?)(?:\n(?!\n*(?: |\t))|$)", re.DOTALL
)
code_block = code_block_pattern.search(text)
if code_block is not None:
return code_block.group(1)
# if no code block is found, assume the LM is simply filling the code
return textwrap.indent(text, " " * 4)
def generate_sample(model, tokenizer, question, entry_point):
response, _ = model.chat(
tokenizer,
question,
history=None,
)
print(question)
print(response)
answer = extract_code(response, entry_point)
return answer, response
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Test HF checkpoint.")
parser.add_argument(
"-c",
"--checkpoint-path",
type=Path,
help="Checkpoint path",
default="Qwen/Qwen-7B-Chat",
)
parser.add_argument(
"-f",
"--sample-input-file",
type=str,
default=None,
help="data path to HumanEval.jsonl",
)
parser.add_argument(
"-o", "--sample-output-file", type=str, default="HumanEval_res.jsonl"
)
args = parser.parse_args()
print("Loading tokenizer ...")
tokenizer = AutoTokenizer.from_pretrained(
args.checkpoint_path, trust_remote_code=True
)
print("Loading model ...")
model = AutoModelForCausalLM.from_pretrained(
args.checkpoint_path,
device_map="auto",
trust_remote_code=True,
bf16=True,
use_flash_attn=True,
).eval()
model.generation_config = GenerationConfig.from_pretrained(
args.checkpoint_path, trust_remote_code=True
)
model.generation_config.do_sample = False # use greedy decoding
model.generation_config.repetition_penalty = 1.0 # disable repetition penalty
f_output = jsonlines.Writer(open(args.sample_output_file, "w", encoding="utf-8"))
f = jsonlines.open(args.sample_input_file)
with f_output as output:
for jobj in tqdm.tqdm(f, desc="task_idx"):
# use humanevalpack prompt
signature = re.search(
rf"def\s+({jobj['entry_point']}.*?):\s*\n", jobj["prompt"]
).group(1)
description = "\n".join(
[
line.strip()
for line in re.search(
rf"(?:\"\"\"|''')(.*?)(?:\"\"\"|''')", jobj["prompt"], re.DOTALL
)
.group(1)
.split("\n")
]
)
prompt = (
f"Write a Python function `{signature}` to solve the following problem:\n"
f"{description}\n"
f"{jobj['prompt']}"
)
task_id = jobj["task_id"]
answer, response = generate_sample(
model, tokenizer, prompt, jobj["entry_point"]
)
gen_jobjs = {"task_id": task_id, "completion": answer, "response": response}
output.write(gen_jobjs)
f_output.close()