You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
159 lines
5.3 KiB
Python
159 lines
5.3 KiB
Python
import hashlib
|
|
import asyncpg
|
|
import numpy as np
|
|
from pgvector.sqlalchemy import Vector
|
|
from pgvector.asyncpg import register_vector
|
|
import sqlalchemy
|
|
from sqlalchemy.orm import mapped_column, relationship, Mapped
|
|
from sqlalchemy.ext.asyncio import AsyncEngine
|
|
|
|
import config
|
|
from api.model.base import BaseModel
|
|
from service.database import DatabaseService
|
|
|
|
class TitleIndexModel(BaseModel):
|
|
__tablename__ = "embedding_search_title_index"
|
|
|
|
id: Mapped[int] = mapped_column(sqlalchemy.Integer, primary_key=True, autoincrement=True)
|
|
sha1: Mapped[str] = mapped_column(sqlalchemy.String(255), index=True)
|
|
title: Mapped[str] = mapped_column(sqlalchemy.String(255), index=True)
|
|
page_id: Mapped[int] = mapped_column(sqlalchemy.Integer, index=True)
|
|
collection_id: Mapped[int] = mapped_column(sqlalchemy.Integer, index=True)
|
|
rev_id: Mapped[int] = mapped_column(sqlalchemy.Integer, index=True)
|
|
embedding: Mapped[np.ndarray] = mapped_column(Vector(config.EMBEDDING_VECTOR_SIZE), index=True)
|
|
|
|
class TitleIndexHelper:
|
|
__tablename__ = "embedding_search_title_index"
|
|
|
|
columns = [
|
|
"id",
|
|
"sha1",
|
|
"title",
|
|
"page_id",
|
|
"collection_id",
|
|
"rev_id",
|
|
"embedding",
|
|
]
|
|
|
|
def __init__(self, dbs: DatabaseService):
|
|
self.dbs = dbs
|
|
self.initialized = False
|
|
|
|
async def __aenter__(self):
|
|
if not self.initialized:
|
|
self.dbpool = self.dbs.pool.acquire()
|
|
self.dbi = await self.dbpool.__aenter__()
|
|
|
|
await register_vector(self.dbi)
|
|
|
|
self.initialized = True
|
|
|
|
return self
|
|
|
|
async def __aexit__(self, exc_type, exc, tb):
|
|
await self.dbpool.__aexit__(exc_type, exc, tb)
|
|
|
|
def get_columns(self, exclude=[]):
|
|
if len(exclude) == 0:
|
|
return ", ".join(self.columns)
|
|
|
|
return ", ".join([col for col in self.columns if col not in exclude])
|
|
|
|
"""
|
|
Add a title to the index
|
|
"""
|
|
async def add(self, title: str, page_id: int, rev_id: int, collection_id: int, embedding: np.ndarray):
|
|
title_sha1 = hashlib.sha1(title.encode("utf-8")).hexdigest()
|
|
ret = await self.dbi.fetchrow("SELECT * FROM embedding_search_title_index WHERE sha1 = $1", title_sha1)
|
|
|
|
if ret is None:
|
|
new_id = await self.dbi.fetchval("""INSERT INTO embedding_search_title_index
|
|
(sha1, title, page_id, rev_id, collection_id, embedding)
|
|
VALUES ($1, $2, $3, $4, $5, $6)
|
|
RETURNING id""",
|
|
title_sha1, title, page_id, rev_id, collection_id, embedding, column=0)
|
|
return new_id
|
|
|
|
return False
|
|
|
|
"""
|
|
Remove a title from the index
|
|
"""
|
|
async def remove(self, title: str):
|
|
title_sha1 = hashlib.sha1(title.encode("utf-8")).hexdigest()
|
|
await self.dbi.execute("DELETE FROM embedding_search_title_index WHERE sha1 = $1", title_sha1)
|
|
|
|
"""
|
|
Update the indexed revision id of a title
|
|
"""
|
|
async def update_rev_id(self, page_id: int, rev_id: int):
|
|
await self.dbi.execute("UPDATE embedding_search_title_index SET rev_id = $1 WHERE page_id = $2", rev_id, page_id)
|
|
|
|
"""
|
|
Update title data
|
|
"""
|
|
async def update_title_data(self, page_id: int, title: str, rev_id: int, collection_id: int, embedding: np.ndarray):
|
|
if collection_page_id is None:
|
|
collection_page_id = page_id
|
|
|
|
await self.dbi.execute("""UPDATE embedding_search_title_index
|
|
SET title = $1, rev_id = $2, collection_id = $3, embedding = $4
|
|
WHERE page_id = $5""",
|
|
title, rev_id, collection_id, embedding, page_id)
|
|
|
|
"""
|
|
Search for titles by consine similary
|
|
"""
|
|
async def search_title_embedding(self, embedding: np.ndarray, limit: int = 10):
|
|
ret = self.dbi.fetch("""SELECT %s, embedding <-> $1 AS distance
|
|
FROM embedding_search_title_index
|
|
ORDER BY distance DESC
|
|
LIMIT %d""" % (self.get_columns(exclude=['embedding']), limit),
|
|
embedding)
|
|
|
|
return ret
|
|
|
|
"""
|
|
Find a title in the index
|
|
"""
|
|
async def find_by_title(self, title: str, with_embedding=False):
|
|
title_sha1 = hashlib.sha1(title.encode("utf-8")).hexdigest()
|
|
|
|
if with_embedding:
|
|
columns = self.get_columns()
|
|
else:
|
|
columns = self.get_columns(exclude=["embedding"])
|
|
|
|
ret = await self.dbi.fetchrow(
|
|
"SELECT %s FROM embedding_search_title_index WHERE sha1 = $1" % columns,
|
|
title_sha1
|
|
)
|
|
|
|
return ret
|
|
|
|
async def find_by_page_id(self, page_id: int, with_embedding=False):
|
|
if with_embedding:
|
|
columns = self.get_columns()
|
|
else:
|
|
columns = self.get_columns(exclude=["embedding"])
|
|
|
|
ret = await self.dbi.fetchrow(
|
|
"SELECT %s FROM embedding_search_title_index WHERE page_id = $1" % columns,
|
|
page_id
|
|
)
|
|
|
|
return ret
|
|
|
|
async def find_by_collection_id(self, collection_id: int, with_embedding=False):
|
|
if with_embedding:
|
|
columns = self.get_columns()
|
|
else:
|
|
columns = self.get_columns(exclude=["embedding"])
|
|
|
|
ret = await self.dbi.fetch(
|
|
"SELECT %s FROM embedding_search_title_index WHERE collection_id = $1" % columns,
|
|
collection_id
|
|
)
|
|
|
|
return ret
|