You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

307 lines
11 KiB
Python

from __future__ import annotations
from typing import Optional, TypedDict
import sqlalchemy
from api.model.embedding_search.title_collection import (
TitleCollectionHelper,
TitleCollectionModel,
)
from api.model.embedding_search.title_index import TitleIndexHelper, TitleIndexModel
from api.model.embedding_search.page_index import PageIndexHelper
from service.database import DatabaseService
from service.mediawiki_api import MediaWikiApi
from service.openai_api import OpenAIApi
from service.tiktoken import TikTokenService
from utils.wiki import getWikiSentences
class EmbeddingRunningException(Exception):
pass
class EmbeddingSearchArgs(TypedDict):
limit: Optional[int]
in_collection: Optional[bool]
distance_limit: Optional[float]
class EmbeddingSearchService:
indexing_page_ids: list[int] = []
def __init__(self, dbs: DatabaseService, title: str):
self.dbs = dbs
self.title = title
self.base_title = title.split("/")[0]
self.title_index_helper = TitleIndexHelper(dbs)
self.title_collection_helper = TitleCollectionHelper(dbs)
self.page_index: PageIndexHelper = None
self.tiktoken: TikTokenService = None
self.mwapi = MediaWikiApi.create()
self.openai_api = OpenAIApi.create()
self.page_id: Optional[int] = None
self.collection_id: Optional[int] = None
self.title_index: Optional[TitleIndexModel] = None
self.collection_info: Optional[TitleCollectionModel] = None
self.page_info: dict = None
self.unindexed_docs: list = None
async def __aenter__(self):
self.tiktoken = await TikTokenService.create()
await self.title_index_helper.__aenter__()
await self.title_collection_helper.__aenter__()
self.title_index = await self.title_index_helper.find_by_title(self.title)
if self.title_index is None:
# Title may changed, get page info from page_id
await self.load_page_info()
self.title_index = await self.title_index_helper.find_by_page_id(
self.page_info["pageid"]
)
self.page_id = self.page_info["pageid"]
else:
self.page_id = self.title_index.page_id
self.collection_id = self.title_index.collection_id
self.page_index = PageIndexHelper(self.dbs, self.collection_id)
await self.page_index.__aenter__()
return self
async def __aexit__(self, exc_type, exc, tb):
await self.title_index_helper.__aexit__(exc_type, exc, tb)
await self.title_collection_helper.__aexit__(exc_type, exc, tb)
if self.page_index is not None:
await self.page_index.__aexit__(exc_type, exc, tb)
async def page_index_exists(self, check_table=True):
if check_table:
return self.page_index and await self.page_index.table_exists()
else:
return self.page_index is not None
async def load_page_info(self, reload=False):
if self.page_info is None or reload:
self.page_info = await self.mwapi.get_page_info(self.title)
async def should_update_page_index(self, remote_update=False):
if not remote_update:
if self.title_index is None:
return True
return self.title_index.indexed_rev_id != self.title_index.latest_rev_id
else:
await self.load_page_info()
if (
self.title_index is not None
and await self.page_index_exists()
and self.title_index.indexed_rev_id == self.page_info["lastrevid"]
):
# Not changed
return False
return True
async def update_title_index(self, remote_update=False):
if not await self.should_update_page_index(remote_update):
return False
await self.load_page_info()
self.page_id = self.page_info["pageid"]
if self.page_id in self.indexing_page_ids:
raise EmbeddingRunningException("Page index is running now")
self.title: str = self.page_info["title"]
self.base_title = self.title.split("/")[0]
# Find collection by base title
self.collection_info = await self.title_collection_helper.find_by_title(
self.base_title
)
if self.collection_info is None:
# Create collection
self.collection_info = await self.title_collection_helper.add(
self.base_title
)
if self.collection_info is None:
raise Exception("Failed to create title collection")
self.collection_id = self.collection_info.id
if self.title_index == None:
# Create title record
self.title_index = TitleIndexModel(
title=self.page_info["title"],
page_id=self.page_id,
indexed_rev_id=None,
latest_rev_id=self.page_info["lastrevid"],
collection_id=self.collection_id,
embedding=None,
)
self.title_index = await self.title_index_helper.add(self.title_index)
if self.title_index is None:
raise Exception("Failed to create title index")
else:
self.title_index.latest_rev_id = self.page_info["lastrevid"]
# Title changed, remove embedding
# Title sha1 will be updated by model helper
if self.title_index.title != self.page_info["title"]:
self.title_index.title = self.page_info["title"]
self.title_index.embedding = None
# Collection changed, remove old index
if self.collection_id != self.title_index.collection_id:
async with PageIndexHelper(self.dbs, self.title_index.collection_id) as old_page_index:
await old_page_index.init_table()
old_page_index.remove_by_page_id(self.page_id)
self.title_index.collection_id = self.collection_id
await self.title_index_helper.update(self.title_index)
# Update collection main page id
if (
self.title == self.collection_info.title
and self.page_id != self.collection_info.page_id
):
await self.title_collection_helper.set_main_page_id(
self.base_title, self.page_id
)
if self.page_index:
await self.page_index.__aexit__(None, None, None)
self.page_index = PageIndexHelper(self.dbs, self.collection_id)
await self.page_index.__aenter__()
await self.page_index.init_table()
async def prepare_update_index(self):
await self.update_title_index()
page_content = await self.mwapi.parse_page(self.title)
self.sentences = getWikiSentences(page_content)
self.unindexed_docs = await self.page_index.get_unindexed_doc(
self.sentences, self.page_id, with_temporary=False
)
return True
async def get_unindexed_tokens(self):
if self.unindexed_docs is None:
return 0
else:
tokens = 0
for doc in self.unindexed_docs:
if "text" in doc:
tokens += await self.tiktoken.get_tokens(doc["text"])
return tokens
async def update_page_index(self, on_progress=None):
if self.unindexed_docs is None:
return False
chunk_limit = 500
chunk_len = 0
doc_chunk = []
total_token_usage = 0
processed_len = 0
async def on_embedding_progress(current, length):
nonlocal processed_len
indexed_docs = processed_len + current
if on_progress is not None:
await on_progress(indexed_docs, len(self.unindexed_docs))
async def embedding_doc(doc_chunk):
(doc_chunk, token_usage) = await self.openai_api.get_embeddings(
doc_chunk, on_embedding_progress
)
await self.page_index.index_doc(doc_chunk, self.page_id)
return token_usage
if len(self.unindexed_docs) > 0:
if on_progress is not None:
await on_progress(0, len(self.unindexed_docs))
for doc in self.unindexed_docs:
chunk_len += len(doc)
if chunk_len > chunk_limit:
total_token_usage += await embedding_doc(doc_chunk)
processed_len += len(doc_chunk)
if on_progress is not None:
await on_progress(processed_len, len(self.unindexed_docs))
doc_chunk = []
chunk_len = len(doc)
doc_chunk.append(doc)
if len(doc_chunk) > 0:
total_token_usage += await embedding_doc(doc_chunk)
if on_progress is not None:
await on_progress(len(self.unindexed_docs), len(self.unindexed_docs))
await self.page_index.remove_outdated_doc(self.sentences, self.page_id)
# Update database
# This task may take a long time, refresh model to retrieve latest data
self.title_index = await self.title_index_helper.refresh(self.title_index)
self.title_index.indexed_rev_id = self.page_info["lastrevid"]
# Update title embedding
if await self.title_index.awaitable_attrs.embedding is None:
doc_chunk = [{"text": self.title}]
(doc_chunk, token_usage) = await self.openai_api.get_embeddings(doc_chunk)
total_token_usage += token_usage
embedding = doc_chunk[0]["embedding"]
self.title_index.embedding = embedding
await self.title_index_helper.update(self.title_index)
return total_token_usage
async def search(
self,
query: str,
limit: int = 10,
in_collection: bool = False,
distance_limit: float = 0.6,
):
if self.page_index is None:
raise Exception("Page index is not initialized")
query_doc = [{"text": query}]
query_doc, token_usage = await self.openai_api.get_embeddings(query_doc)
query_embedding = query_doc[0]["embedding"]
if query_embedding is None:
return [], token_usage
res = await self.page_index.search_text_embedding(
query_embedding, in_collection, limit, self.page_id
)
if res:
filtered = []
for one in res:
if one["distance"] < distance_limit:
filtered.append(dict(one))
return filtered, token_usage
else:
return res, token_usage