You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

496 lines
24 KiB
Python

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import ctypes;
import math
import os;
import threading
from typing import Optional, Tuple, Union, List, Callable, Dict, Any;
from copy import deepcopy
import platform
if platform.system() == 'Windows':
fastllm_lib = ctypes.cdll.LoadLibrary(os.path.join(os.path.split(os.path.realpath(__file__))[0], "fastllm_tools.dll"))
else:
fastllm_lib = ctypes.cdll.LoadLibrary(os.path.join(os.path.split(os.path.realpath(__file__))[0], "libfastllm_tools.so"))
fastllm_lib.create_llm_model.argtypes = [ctypes.c_char_p]
fastllm_lib.create_llm_model.restype = ctypes.c_int
fastllm_lib.token_decode.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_char_p]
fastllm_lib.token_decode.restype = ctypes.c_int
fastllm_lib.token_encode_string.argtypes = [ctypes.c_int, ctypes.c_char_p, ctypes.c_int, ctypes.POINTER(ctypes.c_int)]
fastllm_lib.token_encode_string.restype = ctypes.c_int
fastllm_lib.launch_response_llm_model.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.c_void_p,
ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
ctypes.c_float, ctypes.c_float, ctypes.c_bool]
fastllm_lib.launch_response_llm_model.restype = ctypes.c_int
fastllm_lib.fetch_response_llm_model.argtypes = [ctypes.c_int, ctypes.c_int]
fastllm_lib.fetch_response_llm_model.restype = ctypes.c_int
fastllm_lib.fetch_response_logits_llm_model.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_float)]
fastllm_lib.fetch_response_logits_llm_model.restype = ctypes.c_int
fastllm_lib.response_str_llm_model.argtypes = [ctypes.c_int, ctypes.c_char_p,
ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
ctypes.c_float, ctypes.c_float, ctypes.c_bool]
fastllm_lib.response_str_llm_model.restype = ctypes.c_char_p
fastllm_lib.launch_response_str_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p,
ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
ctypes.c_float, ctypes.c_float, ctypes.c_bool]
fastllm_lib.launch_response_str_llm_model.restype = ctypes.c_int
fastllm_lib.fetch_response_str_llm_model.argtypes = [ctypes.c_int, ctypes.c_int]
fastllm_lib.fetch_response_str_llm_model.restype = ctypes.c_char_p
fastllm_lib.make_history_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p, ctypes.c_int, ctypes.c_char_p, ctypes.c_char_p]
fastllm_lib.make_history_llm_model.restype = ctypes.c_char_p
fastllm_lib.make_input_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p, ctypes.c_int, ctypes.c_char_p]
fastllm_lib.make_input_llm_model.restype = ctypes.c_char_p
fastllm_lib.add_tokenizer_word_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p, ctypes.c_float, ctypes.c_int]
fastllm_lib.set_device_map.argtype = [ctypes.c_int, ctypes.c_void_p, ctypes.c_char_p, ctypes.c_void_p]
fastllm_lib.get_llm_model_type.argtype = [ctypes.c_int]
fastllm_lib.get_llm_model_type.restype = ctypes.c_char_p
fastllm_lib.response_batch_str_llm_model.argtypes = [ctypes.c_int, ctypes.POINTER(ctypes.c_char_p), ctypes.c_int,
ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
ctypes.c_float, ctypes.c_float, ctypes.c_bool]
fastllm_lib.response_batch_str_llm_model.restype = ctypes.POINTER(ctypes.c_char_p)
fastllm_lib.response_batch_tokens_llm_model.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_int), ctypes.POINTER(ctypes.c_int),
ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
ctypes.c_float, ctypes.c_float, ctypes.c_bool]
fastllm_lib.response_batch_tokens_llm_model.restype = ctypes.POINTER(ctypes.c_char_p)
def set_cpu_threads(threads: int):
fastllm_lib.set_cpu_threads(threads);
def get_cpu_threads() -> int:
return fastllm_lib.get_cpu_threads();
def print_ins_info():
fastllm_lib.print_cpu_ins();
def set_cpu_kvcache(cpu_kvcache):
fastllm_lib.set_kvcache_in_cpu(ctypes.c_bool(cpu_kvcache));
def get_cpu_kvcache():
return fastllm_lib.get_kvcache_in_cpu();
def set_cpu_low_mem(low_mem):
fastllm_lib.set_cpu_low_mem(ctypes.c_bool(low_mem));
def get_cpu_low_mem():
return fastllm_lib.get_cpu_low_mem();
def set_device_map(device_map):
devices = [];
values = [];
if (isinstance(device_map, str)):
devices.append(device_map);
values.append(1);
elif (isinstance(device_map, list)):
devices = [str(x) for x in device_map];
values = [1 for x in device_map];
elif (isinstance(device_map, dict)):
devices = [str(x) for x in device_map.keys()];
values = [int(device_map[x]) for x in device_map.keys()];
else:
print("set_device_map error.");
return;
device_str = ''.join(devices);
device_len = [len(x) for x in devices];
fastllm_lib.set_device_map(len(device_len),
(ctypes.c_int * len(device_len))(*device_len),
device_str.encode(),
(ctypes.c_int * len(values))(*values));
def from_hf(model,
tokenizer = None,
dtype = "float16"):
from fastllm_pytools import hf_model;
return hf_model.create(model, tokenizer, dtype = dtype);
class model:
def __init__ (self, path : str,
id : int = -99999):
if (id != -99999):
self.model = id;
else:
self.model = fastllm_lib.create_llm_model(path.encode());
self.direct_query = False;
# 为了减少重复申请释放buffer对象而使用的线程局部存储区对象池
self.thread_local_obj = threading.local()
self.thread_local_obj.tokenizer_encode_string__output_buffer = None
self.thread_local_obj.tokenizer_decode_token__output_buffer = None
# tokenizer_decode_token 输出结果的静态缓存,手工触发构建
# 由于token数量有限且不太多所以缓存该结果来减少调用较为适合。
# 不做成自动缓存是为了避免在多线程调用的时候对缓存dict加锁同时也为不同场景提供选择空间
self.tokenizer_decode_token_cache = None
self.model_type = fastllm_lib.get_llm_model_type(self.model).decode()
# print("model_type:", self.model_type)
def get_prompt(self,
query: str,
history: List[Tuple[str, str]] = None) -> str:
if (not(history)):
history = [];
prompt = "";
for i, (old_query, response) in enumerate(history):
prompt = fastllm_lib.make_history_llm_model(self.model, prompt.encode(), i, old_query.encode(), response.encode()).decode();
prompt = fastllm_lib.make_input_llm_model(self.model, prompt.encode(), len(history), query.encode()).decode();
return prompt;
def save(self, path : str):
fastllm_lib.save_llm_model(self.model, path.encode());
def eval(self):
pass;
def build_tokenizer_decode_token_cache(self):
if self.tokenizer_decode_token_cache is not None:
return
cache_dict = dict()
vocab_size = fastllm_lib.get_tokenizer_vocab_size(self.model)
for token_id in range(vocab_size):
cache_dict[token_id] = self.tokenizer_decode_token(token_id)
self.tokenizer_decode_token_cache = cache_dict
def tokenizer_encode_string(self, content: str) -> List[int]:
output_buffer_init_len = 1024
if self.thread_local_obj.tokenizer_encode_string__output_buffer is None:
self.thread_local_obj.tokenizer_encode_string__output_buffer = (ctypes.c_int * output_buffer_init_len)()
buffer = self.thread_local_obj.tokenizer_encode_string__output_buffer
buffer_len = len(buffer)
result_len = fastllm_lib.token_encode_string(self.model, content.encode(), buffer_len, buffer)
if result_len > buffer_len:
if result_len > 10240:
# 要处理的数据过长使用一次性的buffer
temp_buffer = (ctypes.c_int * result_len)()
ret = fastllm_lib.token_encode_string(self.model, content.encode(), result_len, temp_buffer)
return [i for i in temp_buffer]
else:
# 扩展buffer大小
new_buffer_len = round(math.ceil(result_len / 1024.0)) * 1024
buffer = (ctypes.c_int * new_buffer_len)()
self.thread_local_obj.tokenizer_encode_string__output_buffer = buffer
result_len = fastllm_lib.token_encode_string(self.model, content.encode(), new_buffer_len, buffer)
return [buffer[i] for i in range(result_len)]
def tokenizer_decode_token(self, token_id: int) -> bytes:
if self.tokenizer_decode_token_cache is not None:
cache_result = self.tokenizer_decode_token_cache.get(token_id)
if cache_result is not None:
return cache_result
output_buffer_init_len = 256
if self.thread_local_obj.tokenizer_decode_token__output_buffer is None:
self.thread_local_obj.tokenizer_decode_token__output_buffer = ctypes.create_string_buffer(output_buffer_init_len)
buffer = self.thread_local_obj.tokenizer_decode_token__output_buffer
ret = fastllm_lib.token_decode(self.model, token_id, len(buffer), buffer)
if ret > 0:
# buffer长度不够扩展buffer大小
new_buffer_len = round(math.ceil(ret / 16.0)) * 16
buffer = ctypes.create_string_buffer(new_buffer_len)
self.thread_local_obj.tokenizer_decode_token__output_buffer = buffer
ret = fastllm_lib.token_decode(self.model, token_id, len(buffer), buffer)
assert ret == 0
buffer_bytes = buffer.raw
result_len = len(buffer_bytes)
for i in range(len(buffer_bytes)):
if buffer_bytes[i] == 0:
result_len = i
break
return buffer_bytes[:result_len]
def response_logits(self,
query: str,
history: List[Tuple[str, str]] = None,
tokenizer = None) -> str:
prompt = query if self.direct_query else self.get_prompt(query, history);
if (tokenizer == None):
handle = fastllm_lib.launch_response_str_llm_model(self.model, prompt.encode(),
ctypes.c_int(1), ctypes.c_bool(False), ctypes.c_float(1), ctypes.c_int(1),
ctypes.c_float(1), ctypes.c_float(1), ctypes.c_bool(True));
else:
input = tokenizer.encode(prompt);
handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
1, False, 1, 1, 1, 1, True);
vocab_size = fastllm_lib.get_tokenizer_vocab_size(self.model);
logits = list(range(vocab_size))
array = (ctypes.c_float * (vocab_size * 4))(*logits);
ret = fastllm_lib.fetch_response_logits_llm_model(self.model, handle, array);
out = list(array)[:vocab_size];
while (ret != -1):
ret = fastllm_lib.fetch_response_logits_llm_model(self.model, handle, array);
return out;
def response(self,
query: str,
history: List[Tuple[str, str]] = None,
max_length: int = 8192, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0) -> str:
ret = "";
for i in self.stream_response(query = query,
history = history,
max_length = max_length,
do_sample = do_sample,
top_p = top_p, top_k = top_k,
temperature = temperature,
repeat_penalty = repeat_penalty,
one_by_one = True):
ret += i;
return ret;
def stream_response(self,
query: str,
history: List[Tuple[str, str]] = None,
max_length: int = 8192, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0,
one_by_one = True):
prompt = query if self.direct_query else self.get_prompt(query, history);
handle = fastllm_lib.launch_response_str_llm_model(self.model, prompt.encode(),
ctypes.c_int(max_length), ctypes.c_bool(do_sample), ctypes.c_float(top_p), ctypes.c_int(top_k),
ctypes.c_float(temperature), ctypes.c_float(repeat_penalty), ctypes.c_bool(False));
res = "";
ret = b'';
fail_cnt = 0;
while True:
ret += fastllm_lib.fetch_response_str_llm_model(self.model, handle);
cur = "";
try:
cur = ret.decode();
ret = b'';
except:
fail_cnt += 1;
if (fail_cnt == 20):
break;
else:
continue;
fail_cnt = 0;
if (cur == "<flmeos>"):
break;
if one_by_one:
yield cur;
else:
res += cur;
yield res;
def stream_response_raw(self,
input_tokens: List[int],
max_length: int = 8192, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0,
one_by_one = True
):
handle = fastllm_lib.launch_response_llm_model(self.model, len(input_tokens),
(ctypes.c_int * len(input_tokens))(*input_tokens),
ctypes.c_int(max_length), ctypes.c_bool(do_sample), ctypes.c_float(top_p), ctypes.c_int(top_k),
ctypes.c_float(temperature), ctypes.c_float(repeat_penalty), ctypes.c_bool(False))
# 可能遇到长尾char需要多个token才能够生成所以只返回bytesstring.decode策略交给外部
# 方便统计输出token数量和控制不完整utf8时候解码的逻辑
total_bytes = b''
while True:
cur_token = fastllm_lib.fetch_response_llm_model(self.model, handle)
if cur_token == -1:
break
cur_bytes = self.tokenizer_decode_token(cur_token)
if one_by_one:
yield cur_bytes
else:
total_bytes += cur_bytes
yield total_bytes
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 8192,
do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0, **kwargs):
if self.model_type != "chatglm3":
if (not(history)):
history = [];
prompt = query if self.direct_query else self.get_prompt(query, history);
input = tokenizer.encode(prompt);
handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
False);
result = [];
while True:
cur = fastllm_lib.fetch_response_llm_model(self.model, handle);
if (cur == -1):
break;
result.append(cur);
response = tokenizer.decode(result);
history = history + [(query, response)];
return response, history;
else:
if history is None:
history = []
role = "user"
input = self.build_chatglm3_input(tokenizer, query, history=history, role=role)
history.append({"role": role, "content": query})
handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
False);
tokens = [];
while True:
cur = fastllm_lib.fetch_response_llm_model(self.model, handle);
if (cur == -1):
break;
tokens.append(cur);
response = tokenizer.decode(tokens);
if response and response[-1] != "<EFBFBD>":
response, new_history = self.process_chatglm3_response(response, history)
return response, new_history
def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, past_key_values = None,
max_length: int = 8192, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0,
return_past_key_values = False, **kwargs) -> str:
if self.model_type != "chatglm3":
if (not(history)):
history = [];
prompt = query if self.direct_query else self.get_prompt(query, history);
input = tokenizer.encode(prompt);
handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
False);
tokens = [];
while True:
cur = fastllm_lib.fetch_response_llm_model(self.model, handle);
if (cur == -1):
break;
tokens.append(cur);
response = tokenizer.decode(tokens);
new_history = history + [(query, response)];
if return_past_key_values:
yield response, new_history, None;
else:
yield response, new_history;
else:
if history is None:
history = []
role = "user"
input = self.build_chatglm3_input(tokenizer, query, history=history, role=role)
history.append({"role": role, "content": query})
handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
False);
tokens = [];
while True:
cur = fastllm_lib.fetch_response_llm_model(self.model, handle);
if (cur == -1):
break;
tokens.append(cur);
response = tokenizer.decode(tokens);
if response and response[-1] != "<EFBFBD>":
response, new_history = self.process_chatglm3_response(response, history)
if return_past_key_values:
yield response, new_history, past_key_values
else:
yield response, new_history
def set_adapter(self, name: str):
fastllm_lib.set_adapter(self.model, str(name).encode())
def disable_adapter(self):
fastllm_lib.disable_adapter(self.model)
def process_chatglm3_response(self, output, history):
content = ""
history = deepcopy(history)
for response in output.split("<|assistant|>"):
metadata, content = response.split("\n", maxsplit=1)
if not metadata.strip():
content = content.strip()
history.append({"role": "assistant", "metadata": metadata, "content": content})
content = content.replace("[[训练时间]]", "2023年")
else:
history.append({"role": "assistant", "metadata": metadata, "content": content})
if history[0]["role"] == "system" and "tools" in history[0]:
content = "\n".join(content.split("\n")[1:-1])
def tool_call(**kwargs):
return kwargs
parameters = eval(content)
content = {"name": metadata.strip(), "parameters": parameters}
else:
content = {"name": metadata.strip(), "content": content}
return content, history
def build_chatglm3_input(self, tokenizer, query, history=None, role="user"):
if history is None:
history = []
input_ids = []
for item in history:
content = item["content"]
if item["role"] == "system" and "tools" in item:
content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
input_ids.extend(tokenizer.build_single_message(item["role"], item.get("metadata", ""), content))
input_ids.extend(tokenizer.build_single_message(role, "", query))
input_ids.extend([tokenizer.get_command("<|assistant|>")])
return input_ids
def response_batch(self, querys: List[str],
historys: List[List[Tuple[str, str]]] = None,
max_length: int = 1024, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0,
**kwargs) -> List[str]:
query_size = len(querys)
if (not(historys)):
historys = [[] for _ in range(query_size)]
inputs = (ctypes.c_char_p * query_size)()
for i, query in enumerate(querys):
prompt = query if self.direct_query else self.get_prompt(query, historys[i])
inputs[i] = ctypes.c_char_p(prompt.encode())
outputs = fastllm_lib.response_batch_str_llm_model(self.model, inputs, query_size,
max_length, do_sample, top_p, top_k, temperature, repeat_penalty, False)
responses = []
for i in range(query_size):
response = ctypes.string_at(outputs[i]).decode()
responses.append(response)
historys[i] = historys[i] + [(querys[i], response)]
return responses, historys
def chat_batch(self, tokenizer, querys: List[str], historys: List[List[Tuple[str, str]]] = None, max_length: int = 1024,
do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0, **kwargs):
query_size = len(querys)
if (not(historys)):
historys = [[] for _ in range(query_size)]
inputs = []
inputs_len = []
for i, query in enumerate(querys):
prompt = query if self.direct_query else self.get_prompt(query, historys[i])
input = tokenizer.encode(prompt);
inputs.extend(input)
inputs_len.append(len(input))
outputs = fastllm_lib.response_batch_tokens_llm_model(self.model, query_size,
(ctypes.c_int * len(inputs_len))(*inputs_len),
(ctypes.c_int * len(inputs))(*inputs),
max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
False)
responses = []
for i in range(query_size):
response = ctypes.string_at(outputs[i]).decode()
responses.append(response)
historys[i] = historys[i] + [(querys[i], response)]
return responses, historys