You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
512 lines
18 KiB
Python
512 lines
18 KiB
Python
# coding=utf-8
|
|
# Implements API for Qwen-7B in OpenAI's format. (https://platform.openai.com/docs/api-reference/chat)
|
|
# Usage: python openai_api.py
|
|
# Visit http://localhost:8000/docs for documents.
|
|
|
|
import re
|
|
import copy
|
|
import json
|
|
import time
|
|
from argparse import ArgumentParser
|
|
from contextlib import asynccontextmanager
|
|
from typing import Dict, List, Literal, Optional, Union
|
|
|
|
import torch
|
|
import uvicorn
|
|
from fastapi import FastAPI, HTTPException
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
from pydantic import BaseModel, Field
|
|
from sse_starlette.sse import EventSourceResponse
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
from transformers.generation import GenerationConfig
|
|
|
|
|
|
@asynccontextmanager
|
|
async def lifespan(app: FastAPI): # collects GPU memory
|
|
yield
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.ipc_collect()
|
|
|
|
|
|
app = FastAPI(lifespan=lifespan)
|
|
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=["*"],
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"],
|
|
)
|
|
|
|
|
|
class ModelCard(BaseModel):
|
|
id: str
|
|
object: str = "model"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
owned_by: str = "owner"
|
|
root: Optional[str] = None
|
|
parent: Optional[str] = None
|
|
permission: Optional[list] = None
|
|
|
|
|
|
class ModelList(BaseModel):
|
|
object: str = "list"
|
|
data: List[ModelCard] = []
|
|
|
|
|
|
class ChatMessage(BaseModel):
|
|
role: Literal["user", "assistant", "system", "function"]
|
|
content: Optional[str]
|
|
function_call: Optional[Dict] = None
|
|
|
|
|
|
class DeltaMessage(BaseModel):
|
|
role: Optional[Literal["user", "assistant", "system"]] = None
|
|
content: Optional[str] = None
|
|
|
|
|
|
class ChatCompletionRequest(BaseModel):
|
|
model: str
|
|
messages: List[ChatMessage]
|
|
functions: Optional[List[Dict]] = None
|
|
temperature: Optional[float] = None
|
|
top_p: Optional[float] = None
|
|
max_length: Optional[int] = None
|
|
stream: Optional[bool] = False
|
|
stop: Optional[List[str]] = None
|
|
|
|
|
|
class ChatCompletionResponseChoice(BaseModel):
|
|
index: int
|
|
message: ChatMessage
|
|
finish_reason: Literal["stop", "length", "function_call"]
|
|
|
|
|
|
class ChatCompletionResponseStreamChoice(BaseModel):
|
|
index: int
|
|
delta: DeltaMessage
|
|
finish_reason: Optional[Literal["stop", "length"]]
|
|
|
|
|
|
class ChatCompletionResponse(BaseModel):
|
|
model: str
|
|
object: Literal["chat.completion", "chat.completion.chunk"]
|
|
choices: List[
|
|
Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]
|
|
]
|
|
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
|
|
|
|
|
|
@app.get("/v1/models", response_model=ModelList)
|
|
async def list_models():
|
|
global model_args
|
|
model_card = ModelCard(id="gpt-3.5-turbo")
|
|
return ModelList(data=[model_card])
|
|
|
|
|
|
# To work around that unpleasant leading-\n tokenization issue!
|
|
def add_extra_stop_words(stop_words):
|
|
if stop_words:
|
|
_stop_words = []
|
|
_stop_words.extend(stop_words)
|
|
for x in stop_words:
|
|
s = x.lstrip("\n")
|
|
if s and (s not in _stop_words):
|
|
_stop_words.append(s)
|
|
return _stop_words
|
|
return stop_words
|
|
|
|
|
|
def trim_stop_words(response, stop_words):
|
|
if stop_words:
|
|
for stop in stop_words:
|
|
idx = response.find(stop)
|
|
if idx != -1:
|
|
response = response[:idx]
|
|
return response
|
|
|
|
|
|
TOOL_DESC = """{name_for_model}: Call this tool to interact with the {name_for_human} API. What is the {name_for_human} API useful for? {description_for_model} Parameters: {parameters}"""
|
|
|
|
REACT_INSTRUCTION = """Answer the following questions as best you can. You have access to the following APIs:
|
|
|
|
{tools_text}
|
|
|
|
Use the following format:
|
|
|
|
Question: the input question you must answer
|
|
Thought: you should always think about what to do
|
|
Action: the action to take, should be one of [{tools_name_text}]
|
|
Action Input: the input to the action
|
|
Observation: the result of the action
|
|
... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
|
|
Thought: I now know the final answer
|
|
Final Answer: the final answer to the original input question
|
|
|
|
Begin!"""
|
|
|
|
_TEXT_COMPLETION_CMD = object()
|
|
|
|
|
|
#
|
|
# Temporarily, the system role does not work as expected.
|
|
# We advise that you write the setups for role-play in your query,
|
|
# i.e., use the user role instead of the system role.
|
|
#
|
|
# TODO: Use real system role when the model is ready.
|
|
#
|
|
def parse_messages(messages, functions):
|
|
if all(m.role != "user" for m in messages):
|
|
raise HTTPException(
|
|
status_code=400,
|
|
detail=f"Invalid request: Expecting at least one user message.",
|
|
)
|
|
|
|
messages = copy.deepcopy(messages)
|
|
default_system = "You are a helpful assistant."
|
|
system = ""
|
|
if messages[0].role == "system":
|
|
system = messages.pop(0).content.lstrip("\n").rstrip()
|
|
if system == default_system:
|
|
system = ""
|
|
|
|
if functions:
|
|
tools_text = []
|
|
tools_name_text = []
|
|
for func_info in functions:
|
|
name = func_info.get("name", "")
|
|
name_m = func_info.get("name_for_model", name)
|
|
name_h = func_info.get("name_for_human", name)
|
|
desc = func_info.get("description", "")
|
|
desc_m = func_info.get("description_for_model", desc)
|
|
tool = TOOL_DESC.format(
|
|
name_for_model=name_m,
|
|
name_for_human=name_h,
|
|
# Hint: You can add the following format requirements in description:
|
|
# "Format the arguments as a JSON object."
|
|
# "Enclose the code within triple backticks (`) at the beginning and end of the code."
|
|
description_for_model=desc_m,
|
|
parameters=json.dumps(func_info["parameters"], ensure_ascii=False),
|
|
)
|
|
tools_text.append(tool)
|
|
tools_name_text.append(name_m)
|
|
tools_text = "\n\n".join(tools_text)
|
|
tools_name_text = ", ".join(tools_name_text)
|
|
system += "\n\n" + REACT_INSTRUCTION.format(
|
|
tools_text=tools_text,
|
|
tools_name_text=tools_name_text,
|
|
)
|
|
system = system.lstrip("\n").rstrip()
|
|
|
|
dummy_thought = {
|
|
"en": "\nThought: I now know the final answer.\nFinal answer: ",
|
|
"zh": "\nThought: 我会作答了。\nFinal answer: ",
|
|
}
|
|
|
|
_messages = messages
|
|
messages = []
|
|
for m_idx, m in enumerate(_messages):
|
|
role, content, func_call = m.role, m.content, m.function_call
|
|
if content:
|
|
content = content.lstrip("\n").rstrip()
|
|
if role == "function":
|
|
if (len(messages) == 0) or (messages[-1].role != "assistant"):
|
|
raise HTTPException(
|
|
status_code=400,
|
|
detail=f"Invalid request: Expecting role assistant before role function.",
|
|
)
|
|
messages[-1].content += f"\nObservation: {content}"
|
|
if m_idx == len(_messages) - 1:
|
|
messages[-1].content += "\nThought:"
|
|
elif role == "assistant":
|
|
if len(messages) == 0:
|
|
raise HTTPException(
|
|
status_code=400,
|
|
detail=f"Invalid request: Expecting role user before role assistant.",
|
|
)
|
|
last_msg = messages[-1].content
|
|
last_msg_has_zh = len(re.findall(r"[\u4e00-\u9fff]+", last_msg)) > 0
|
|
if func_call is None:
|
|
if functions:
|
|
content = dummy_thought["zh" if last_msg_has_zh else "en"] + content
|
|
else:
|
|
f_name, f_args = func_call["name"], func_call["arguments"]
|
|
if not content:
|
|
if last_msg_has_zh:
|
|
content = f"Thought: 我可以使用 {f_name} API。"
|
|
else:
|
|
content = f"Thought: I can use {f_name}."
|
|
content = f"\n{content}\nAction: {f_name}\nAction Input: {f_args}"
|
|
if messages[-1].role == "user":
|
|
messages.append(
|
|
ChatMessage(role="assistant", content=content.lstrip("\n").rstrip())
|
|
)
|
|
else:
|
|
messages[-1].content += content
|
|
elif role == "user":
|
|
messages.append(
|
|
ChatMessage(role="user", content=content.lstrip("\n").rstrip())
|
|
)
|
|
else:
|
|
raise HTTPException(
|
|
status_code=400, detail=f"Invalid request: Incorrect role {role}."
|
|
)
|
|
|
|
query = _TEXT_COMPLETION_CMD
|
|
if messages[-1].role == "user":
|
|
query = messages[-1].content
|
|
messages = messages[:-1]
|
|
|
|
if len(messages) % 2 != 0:
|
|
raise HTTPException(status_code=400, detail="Invalid request")
|
|
|
|
history = [] # [(Q1, A1), (Q2, A2), ..., (Q_last_turn, A_last_turn)]
|
|
for i in range(0, len(messages), 2):
|
|
if messages[i].role == "user" and messages[i + 1].role == "assistant":
|
|
usr_msg = messages[i].content.lstrip("\n").rstrip()
|
|
bot_msg = messages[i + 1].content.lstrip("\n").rstrip()
|
|
if system and (i == len(messages) - 2):
|
|
usr_msg = f"{system}\n\nQuestion: {usr_msg}"
|
|
system = ""
|
|
for t in dummy_thought.values():
|
|
t = t.lstrip("\n")
|
|
if bot_msg.startswith(t) and ("\nAction: " in bot_msg):
|
|
bot_msg = bot_msg[len(t) :]
|
|
history.append([usr_msg, bot_msg])
|
|
else:
|
|
raise HTTPException(
|
|
status_code=400,
|
|
detail="Invalid request: Expecting exactly one user (or function) role before every assistant role.",
|
|
)
|
|
if system:
|
|
assert query is not _TEXT_COMPLETION_CMD
|
|
query = f"{system}\n\nQuestion: {query}"
|
|
return query, history
|
|
|
|
|
|
def parse_response(response):
|
|
func_name, func_args = "", ""
|
|
i = response.rfind("\nAction:")
|
|
j = response.rfind("\nAction Input:")
|
|
k = response.rfind("\nObservation:")
|
|
if 0 <= i < j: # If the text has `Action` and `Action input`,
|
|
if k < j: # but does not contain `Observation`,
|
|
# then it is likely that `Observation` is omitted by the LLM,
|
|
# because the output text may have discarded the stop word.
|
|
response = response.rstrip() + "\nObservation:" # Add it back.
|
|
k = response.rfind("\nObservation:")
|
|
func_name = response[i + len("\nAction:") : j].strip()
|
|
func_args = response[j + len("\nAction Input:") : k].strip()
|
|
if func_name:
|
|
choice_data = ChatCompletionResponseChoice(
|
|
index=0,
|
|
message=ChatMessage(
|
|
role="assistant",
|
|
content=response[:i],
|
|
function_call={"name": func_name, "arguments": func_args},
|
|
),
|
|
finish_reason="function_call",
|
|
)
|
|
return choice_data
|
|
z = response.rfind("\nFinal Answer: ")
|
|
if z >= 0:
|
|
response = response[z + len("\nFinal Answer: ") :]
|
|
choice_data = ChatCompletionResponseChoice(
|
|
index=0,
|
|
message=ChatMessage(role="assistant", content=response),
|
|
finish_reason="stop",
|
|
)
|
|
return choice_data
|
|
|
|
|
|
# completion mode, not chat mode
|
|
def text_complete_last_message(history, stop_words_ids, gen_kwargs):
|
|
im_start = "<|im_start|>"
|
|
im_end = "<|im_end|>"
|
|
prompt = f"{im_start}system\nYou are a helpful assistant.{im_end}"
|
|
for i, (query, response) in enumerate(history):
|
|
query = query.lstrip("\n").rstrip()
|
|
response = response.lstrip("\n").rstrip()
|
|
prompt += f"\n{im_start}user\n{query}{im_end}"
|
|
prompt += f"\n{im_start}assistant\n{response}{im_end}"
|
|
prompt = prompt[: -len(im_end)]
|
|
|
|
_stop_words_ids = [tokenizer.encode(im_end)]
|
|
if stop_words_ids:
|
|
for s in stop_words_ids:
|
|
_stop_words_ids.append(s)
|
|
stop_words_ids = _stop_words_ids
|
|
|
|
input_ids = torch.tensor([tokenizer.encode(prompt)]).to(model.device)
|
|
output = model.generate(input_ids, stop_words_ids=stop_words_ids, **gen_kwargs).tolist()[0]
|
|
output = tokenizer.decode(output, errors="ignore")
|
|
assert output.startswith(prompt)
|
|
output = output[len(prompt) :]
|
|
output = trim_stop_words(output, ["<|endoftext|>", im_end])
|
|
print(f"<completion>\n{prompt}\n<!-- *** -->\n{output}\n</completion>")
|
|
return output
|
|
|
|
|
|
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
|
async def create_chat_completion(request: ChatCompletionRequest):
|
|
global model, tokenizer
|
|
|
|
gen_kwargs = {}
|
|
if request.temperature is not None:
|
|
if request.temperature < 0.01:
|
|
gen_kwargs['top_k'] = 1 # greedy decoding
|
|
else:
|
|
# Not recommended. Please tune top_p instead.
|
|
gen_kwargs['temperature'] = request.temperature
|
|
if request.top_p is not None:
|
|
gen_kwargs['top_p'] = request.top_p
|
|
|
|
stop_words = add_extra_stop_words(request.stop)
|
|
if request.functions:
|
|
stop_words = stop_words or []
|
|
if "Observation:" not in stop_words:
|
|
stop_words.append("Observation:")
|
|
|
|
query, history = parse_messages(request.messages, request.functions)
|
|
|
|
if request.stream:
|
|
if request.functions:
|
|
raise HTTPException(
|
|
status_code=400,
|
|
detail="Invalid request: Function calling is not yet implemented for stream mode.",
|
|
)
|
|
generate = predict(query, history, request.model, stop_words, gen_kwargs)
|
|
return EventSourceResponse(generate, media_type="text/event-stream")
|
|
|
|
stop_words_ids = [tokenizer.encode(s) for s in stop_words] if stop_words else None
|
|
if query is _TEXT_COMPLETION_CMD:
|
|
response = text_complete_last_message(history, stop_words_ids=stop_words_ids, gen_kwargs=gen_kwargs)
|
|
else:
|
|
response, _ = model.chat(
|
|
tokenizer,
|
|
query,
|
|
history=history,
|
|
stop_words_ids=stop_words_ids,
|
|
append_history=False,
|
|
**gen_kwargs
|
|
)
|
|
print(f"<chat>\n{history}\n{query}\n<!-- *** -->\n{response}\n</chat>")
|
|
response = trim_stop_words(response, stop_words)
|
|
if request.functions:
|
|
choice_data = parse_response(response)
|
|
else:
|
|
choice_data = ChatCompletionResponseChoice(
|
|
index=0,
|
|
message=ChatMessage(role="assistant", content=response),
|
|
finish_reason="stop",
|
|
)
|
|
return ChatCompletionResponse(
|
|
model=request.model, choices=[choice_data], object="chat.completion"
|
|
)
|
|
|
|
|
|
async def predict(
|
|
query: str, history: List[List[str]], model_id: str, stop_words: List[str], gen_kwargs: Dict,
|
|
):
|
|
global model, tokenizer
|
|
choice_data = ChatCompletionResponseStreamChoice(
|
|
index=0, delta=DeltaMessage(role="assistant"), finish_reason=None
|
|
)
|
|
chunk = ChatCompletionResponse(
|
|
model=model_id, choices=[choice_data], object="chat.completion.chunk"
|
|
)
|
|
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
|
|
|
current_length = 0
|
|
stop_words_ids = [tokenizer.encode(s) for s in stop_words] if stop_words else None
|
|
if stop_words:
|
|
# TODO: It's a little bit tricky to trim stop words in the stream mode.
|
|
raise HTTPException(
|
|
status_code=400,
|
|
detail="Invalid request: custom stop words are not yet supported for stream mode.",
|
|
)
|
|
response_generator = model.chat_stream(
|
|
tokenizer, query, history=history, stop_words_ids=stop_words_ids, **gen_kwargs
|
|
)
|
|
for new_response in response_generator:
|
|
if len(new_response) == current_length:
|
|
continue
|
|
|
|
new_text = new_response[current_length:]
|
|
current_length = len(new_response)
|
|
|
|
choice_data = ChatCompletionResponseStreamChoice(
|
|
index=0, delta=DeltaMessage(content=new_text), finish_reason=None
|
|
)
|
|
chunk = ChatCompletionResponse(
|
|
model=model_id, choices=[choice_data], object="chat.completion.chunk"
|
|
)
|
|
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
|
|
|
choice_data = ChatCompletionResponseStreamChoice(
|
|
index=0, delta=DeltaMessage(), finish_reason="stop"
|
|
)
|
|
chunk = ChatCompletionResponse(
|
|
model=model_id, choices=[choice_data], object="chat.completion.chunk"
|
|
)
|
|
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
|
yield "[DONE]"
|
|
|
|
|
|
def _get_args():
|
|
parser = ArgumentParser()
|
|
parser.add_argument(
|
|
"-c",
|
|
"--checkpoint-path",
|
|
type=str,
|
|
default="Qwen/Qwen-7B-Chat",
|
|
help="Checkpoint name or path, default to %(default)r",
|
|
)
|
|
parser.add_argument(
|
|
"--cpu-only", action="store_true", help="Run demo with CPU only"
|
|
)
|
|
parser.add_argument(
|
|
"--server-port", type=int, default=8000, help="Demo server port."
|
|
)
|
|
parser.add_argument(
|
|
"--server-name",
|
|
type=str,
|
|
default="127.0.0.1",
|
|
help="Demo server name. Default: 127.0.0.1, which is only visible from the local computer."
|
|
" If you want other computers to access your server, use 0.0.0.0 instead.",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = _get_args()
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
args.checkpoint_path,
|
|
trust_remote_code=True,
|
|
resume_download=True,
|
|
)
|
|
|
|
if args.cpu_only:
|
|
device_map = "cpu"
|
|
else:
|
|
device_map = "auto"
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
args.checkpoint_path,
|
|
device_map=device_map,
|
|
trust_remote_code=True,
|
|
resume_download=True,
|
|
).eval()
|
|
|
|
model.generation_config = GenerationConfig.from_pretrained(
|
|
args.checkpoint_path,
|
|
trust_remote_code=True,
|
|
resume_download=True,
|
|
)
|
|
|
|
uvicorn.run(app, host=args.server_name, port=args.server_port, workers=1)
|