You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
326 lines
9.8 KiB
Python
326 lines
9.8 KiB
Python
import os
|
|
import pandas as pd
|
|
import numpy as np
|
|
import argparse
|
|
import datasets
|
|
import torch
|
|
from collections import defaultdict
|
|
|
|
from typing import List
|
|
from tqdm import tqdm
|
|
from transformers.trainer_utils import set_seed
|
|
|
|
|
|
"""
|
|
wget https://huggingface.co/datasets/haonan-li/cmmlu/resolve/main/cmmlu_v1_0_1.zip
|
|
mkdir data/cmmlu
|
|
mv cmmlu_v1_0_1.zip data/cmmlu
|
|
cd data/cmmlu; unzip cmmlu_v1_0_1.zip
|
|
cd ../../
|
|
python evaluate_cmmlu.py -d data/cmmlu/
|
|
"""
|
|
|
|
|
|
def load_models_tokenizer(args):
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
from transformers.generation import GenerationConfig
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
args.checkpoint_path, trust_remote_code=True
|
|
)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
args.checkpoint_path, device_map="auto", trust_remote_code=True
|
|
).eval()
|
|
model.generation_config = GenerationConfig.from_pretrained(
|
|
args.checkpoint_path, trust_remote_code=True
|
|
)
|
|
return model, tokenizer
|
|
|
|
|
|
def format_example(line, include_answer=True):
|
|
example = "问题:" + line["Question"]
|
|
for choice in choices:
|
|
example += f'\n{choice}. {line[f"{choice}"]}'
|
|
|
|
if include_answer:
|
|
example += "\n答案:" + line["Answer"] + "\n\n"
|
|
else:
|
|
example += "\n答案:"
|
|
return example
|
|
|
|
|
|
def generate_few_shot_prompt(k, subject, dev_df):
|
|
prompt = ""
|
|
if k == -1:
|
|
k = dev_df.shape[0]
|
|
for i in range(k):
|
|
prompt += format_example(
|
|
dev_df.iloc[i, :],
|
|
include_answer=True,
|
|
)
|
|
return prompt
|
|
|
|
|
|
def get_logits(tokenizer, model, inputs: List[str]):
|
|
input_ids = tokenizer(inputs, padding=False)["input_ids"]
|
|
input_ids = torch.tensor(input_ids, device=model.device)
|
|
tokens = {"input_ids": input_ids}
|
|
|
|
outputs = model(input_ids)["logits"]
|
|
logits = outputs[:, -1, :]
|
|
log_probs = torch.nn.functional.softmax(logits, dim=-1)
|
|
return log_probs, {"tokens": tokens}
|
|
|
|
|
|
@torch.no_grad()
|
|
def eval_subject(
|
|
model,
|
|
tokenizer,
|
|
subject_name,
|
|
test_df,
|
|
k=5,
|
|
dev_df=None,
|
|
few_shot=False,
|
|
save_result_dir=None,
|
|
**kwargs,
|
|
):
|
|
result = []
|
|
score = []
|
|
|
|
few_shot_prompt = (
|
|
generate_few_shot_prompt(k, subject_name, dev_df) if few_shot else []
|
|
)
|
|
all_probs = {"prob_A": [], "prob_B": [], "prob_C": [], "prob_D": []}
|
|
if args.debug:
|
|
print(f"few_shot_prompt: {few_shot_prompt}")
|
|
|
|
for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
|
|
question = format_example(row, include_answer=False)
|
|
full_prompt = few_shot_prompt + question
|
|
|
|
output, input_info = get_logits(tokenizer, model, [full_prompt])
|
|
assert output.shape[0] == 1
|
|
logits = output.flatten()
|
|
|
|
softval = torch.nn.functional.softmax(
|
|
torch.tensor(
|
|
[
|
|
logits[tokenizer("A")["input_ids"]],
|
|
logits[tokenizer("B")["input_ids"]],
|
|
logits[tokenizer("C")["input_ids"]],
|
|
logits[tokenizer("D")["input_ids"]],
|
|
]
|
|
),
|
|
dim=0,
|
|
)
|
|
if softval.dtype in {torch.bfloat16, torch.float16}:
|
|
softval = softval.to(dtype=torch.float32)
|
|
probs = softval.detach().cpu().numpy()
|
|
|
|
for i, choice in enumerate(choices):
|
|
all_probs[f"prob_{choice}"].append(probs[i])
|
|
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs)]
|
|
|
|
if "Answer" in row:
|
|
correct = 1 if pred == row["Answer"] else 0
|
|
score.append(correct)
|
|
if args.debug:
|
|
print(f'{question} pred: {pred} ref: {row["Answer"]}')
|
|
result.append(pred)
|
|
|
|
if score:
|
|
correct_ratio = 100 * sum(score) / len(score)
|
|
if args.debug:
|
|
print(subject_name, correct_ratio)
|
|
else:
|
|
correct_ratio = 0
|
|
if save_result_dir:
|
|
test_df["model_output"] = result
|
|
for i, choice in enumerate(choices):
|
|
test_df[f"prob_{choice}"] = all_probs[f"prob_{choice}"]
|
|
if score:
|
|
test_df["correctness"] = score
|
|
os.makedirs(save_result_dir, exist_ok=True)
|
|
test_df.to_csv(
|
|
os.path.join(save_result_dir, f"{subject_name}_result.csv"),
|
|
encoding="utf-8",
|
|
index=False,
|
|
)
|
|
|
|
return correct_ratio
|
|
|
|
|
|
def cal_cmmlu(res):
|
|
print("\n\n\n")
|
|
res = {k.split("-")[-1]: float(v) for k, v in res.items()}
|
|
for k, v in TASK_NAME_MAPPING.items():
|
|
avg_acc = np.mean(list(map(lambda x: res[x], v)))
|
|
print(f"{k} acc: {avg_acc:.2f}")
|
|
avg_all_acc = np.mean(list(res.values()))
|
|
print(f"AVERAGE acc: {avg_all_acc:.2f}")
|
|
|
|
|
|
subcategories = {
|
|
"agronomy": ["other"],
|
|
"anatomy": ["biology"],
|
|
"ancient_chinese": ["linguistics", "china specific"],
|
|
"arts": ["arts"],
|
|
"astronomy": ["physics"],
|
|
"business_ethics": ["business"],
|
|
"chinese_civil_service_exam": ["politics", "china specific"],
|
|
"chinese_driving_rule": ["other", "china specific"],
|
|
"chinese_food_culture": ["culture", "china specific"],
|
|
"chinese_foreign_policy": ["politics", "china specific"],
|
|
"chinese_history": ["history", "china specific"],
|
|
"chinese_literature": ["literature", "china specific"],
|
|
"chinese_teacher_qualification": ["education", "china specific"],
|
|
"college_actuarial_science": ["math"],
|
|
"college_education": ["education"],
|
|
"college_engineering_hydrology": ["engineering"],
|
|
"college_law": ["law"],
|
|
"college_mathematics": ["math"],
|
|
"college_medical_statistics": ["statistics"],
|
|
"clinical_knowledge": ["other"],
|
|
"college_medicine": ["other"],
|
|
"computer_science": ["computer science"],
|
|
"computer_security": ["other"],
|
|
"conceptual_physics": ["physics"],
|
|
"construction_project_management": ["other", "china specific"],
|
|
"economics": ["economics"],
|
|
"education": ["education"],
|
|
"elementary_chinese": ["linguistics", "china specific"],
|
|
"elementary_commonsense": ["other", "china specific"],
|
|
"elementary_information_and_technology": ["other"],
|
|
"electrical_engineering": ["engineering"],
|
|
"elementary_mathematics": ["math"],
|
|
"ethnology": ["culture", "china specific"],
|
|
"food_science": ["other"],
|
|
"genetics": ["biology"],
|
|
"global_facts": ["global"],
|
|
"high_school_biology": ["biology"],
|
|
"high_school_chemistry": ["chemistry"],
|
|
"high_school_geography": ["geography"],
|
|
"high_school_mathematics": ["math"],
|
|
"high_school_physics": ["physics"],
|
|
"high_school_politics": ["politics", "china specific"],
|
|
"human_sexuality": ["other"],
|
|
"international_law": ["law"],
|
|
"journalism": ["sociology"],
|
|
"jurisprudence": ["law"],
|
|
"legal_and_moral_basis": ["other"],
|
|
"logical": ["philosophy"],
|
|
"machine_learning": ["computer science"],
|
|
"management": ["business"],
|
|
"marketing": ["business"],
|
|
"marxist_theory": ["philosophy"],
|
|
"modern_chinese": ["linguistics", "china specific"],
|
|
"nutrition": ["other"],
|
|
"philosophy": ["philosophy"],
|
|
"professional_accounting": ["business"],
|
|
"professional_law": ["law"],
|
|
"professional_medicine": ["other"],
|
|
"professional_psychology": ["psychology"],
|
|
"public_relations": ["politics"],
|
|
"security_study": ["politics"],
|
|
"sociology": ["culture"],
|
|
"sports_science": ["other"],
|
|
"traditional_chinese_medicine": ["other", "china specific"],
|
|
"virology": ["biology"],
|
|
"world_history": ["history"],
|
|
"world_religions": ["global"],
|
|
}
|
|
|
|
categories = {
|
|
"STEM": [
|
|
"physics",
|
|
"chemistry",
|
|
"biology",
|
|
"computer science",
|
|
"math",
|
|
"engineering",
|
|
"statistics",
|
|
],
|
|
"Humanities": ["history", "philosophy", "law", "arts", "literature", "global"],
|
|
"Social Science": [
|
|
"linguistics",
|
|
"business",
|
|
"politics",
|
|
"culture",
|
|
"economics",
|
|
"geography",
|
|
"psychology",
|
|
"education",
|
|
"sociology",
|
|
],
|
|
"Other": ["other"],
|
|
"China specific": ["china specific"],
|
|
}
|
|
|
|
TASK_NAME_MAPPING = defaultdict(list)
|
|
for k, v in categories.items():
|
|
for subject, subcat in subcategories.items():
|
|
for c in subcat:
|
|
if c in v:
|
|
TASK_NAME_MAPPING[k].append(subject)
|
|
|
|
|
|
choices = ["A", "B", "C", "D"]
|
|
|
|
|
|
def main(args):
|
|
model, tokenizer = load_models_tokenizer(args)
|
|
|
|
test_result = {}
|
|
for subject_name in tqdm(subcategories.keys()):
|
|
dev_file_path = os.path.join(args.eval_data_path, "dev", f"{subject_name}.csv")
|
|
test_file_path = os.path.join(
|
|
args.eval_data_path, "test", f"{subject_name}.csv"
|
|
)
|
|
dev_df = pd.read_csv(dev_file_path)
|
|
test_df = pd.read_csv(test_file_path)
|
|
|
|
score = eval_subject(
|
|
model,
|
|
tokenizer,
|
|
subject_name,
|
|
dev_df=dev_df,
|
|
test_df=test_df,
|
|
k=5,
|
|
few_shot=True,
|
|
save_result_dir=f"outs/cmmlu_eval_result",
|
|
)
|
|
test_result[subject_name] = score
|
|
cal_cmmlu(test_result)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Test HF checkpoint.")
|
|
parser.add_argument(
|
|
"-c",
|
|
"--checkpoint-path",
|
|
type=str,
|
|
help="Checkpoint path",
|
|
default="Qwen/Qwen-7B",
|
|
)
|
|
parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed")
|
|
|
|
"""Provide extra arguments required for tasks."""
|
|
group = parser.add_argument_group(title="Evaluation options")
|
|
group.add_argument(
|
|
"-d", "--eval_data_path", type=str, required=True, help="Path to eval data"
|
|
)
|
|
group.add_argument(
|
|
"--max-seq-len",
|
|
type=int,
|
|
default=2048,
|
|
help="Size of the output generated text.",
|
|
)
|
|
group.add_argument(
|
|
"--debug", action="store_true", default=False, help="Print infos."
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
set_seed(args.seed)
|
|
|
|
main(args)
|