You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
315 lines
9.4 KiB
Python
315 lines
9.4 KiB
Python
import os
|
|
import argparse
|
|
import re
|
|
import torch
|
|
import pandas as pd
|
|
from tqdm import tqdm
|
|
from thefuzz import process
|
|
from transformers.trainer_utils import set_seed
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
from transformers.generation import GenerationConfig
|
|
|
|
'''
|
|
wget https://people.eecs.berkeley.edu/~hendrycks/data.tar
|
|
mkdir data/mmlu
|
|
mv data.tar data/mmlu
|
|
cd data/mmlu; tar xf data.tar
|
|
cd ../../
|
|
|
|
pip install thefuzz
|
|
python eval/evaluate_chat_mmlu.py -d data/mmlu/data/
|
|
'''
|
|
|
|
def load_models_tokenizer(args):
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
args.checkpoint_path, trust_remote_code=True
|
|
)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
args.checkpoint_path,
|
|
device_map="auto",
|
|
trust_remote_code=True,
|
|
bf16=True,
|
|
use_flash_attn=True,
|
|
).eval()
|
|
model.generation_config = GenerationConfig.from_pretrained(
|
|
args.checkpoint_path, trust_remote_code=True
|
|
)
|
|
model.generation_config.do_sample = False # use greedy decoding
|
|
return model, tokenizer
|
|
|
|
|
|
def format_example(line):
|
|
example = (
|
|
"The following is a multiple-choice question. Please choose the most suitable one among A, B, C and D as the answer to this question.\n\n"
|
|
+ line["question"]
|
|
+ "\n"
|
|
)
|
|
for choice in choices:
|
|
example += f'{choice}. {line[f"{choice}"]}\n'
|
|
return example
|
|
|
|
|
|
def process_before_extraction(gen, choice_dict):
|
|
# replace the choice by letter in the generated sentence
|
|
# from longest one to shortest one
|
|
for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True):
|
|
pattern = re.compile(re.escape(val.rstrip(".")), re.IGNORECASE)
|
|
gen = pattern.sub(key, gen)
|
|
return gen
|
|
|
|
|
|
def extract_choice(gen, choice_list):
|
|
# answer is A | choice is A | choose A
|
|
res = re.search(
|
|
r"(?:(?:[Cc]hoose)|(?:(?:[Aa]nswer|[Cc]hoice)(?![^ABCD]{0,20}?(?:n't|not))[^ABCD]{0,10}?\b(?:|is|:|be))\b)[^ABCD]{0,20}?\b(A|B|C|D)\b",
|
|
gen,
|
|
)
|
|
|
|
# A is correct | A is right
|
|
if res is None:
|
|
res = re.search(
|
|
r"\b(A|B|C|D)\b(?![^ABCD]{0,8}?(?:n't|not)[^ABCD]{0,5}?(?:correct|right))[^ABCD]{0,10}?\b(?:correct|right)\b",
|
|
gen,
|
|
)
|
|
|
|
# straight answer: A
|
|
if res is None:
|
|
res = re.search(r"^(A|B|C|D)(?:\.|,|:|$)", gen)
|
|
|
|
# simply extract the first appearred letter
|
|
if res is None:
|
|
res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen)
|
|
|
|
if res is None:
|
|
return choices[choice_list.index(process.extractOne(gen, choice_list)[0])]
|
|
return res.group(1)
|
|
|
|
|
|
def extract_answer(response, row):
|
|
gen = process_before_extraction(
|
|
response, {choice: row[choice] for choice in choices}
|
|
)
|
|
pred = extract_choice(gen, [row[choice] for choice in choices])
|
|
return pred
|
|
|
|
|
|
@torch.no_grad()
|
|
def eval_subject(
|
|
model,
|
|
tokenizer,
|
|
subject_name,
|
|
test_df,
|
|
save_result_dir=None,
|
|
overwrite=False,
|
|
**kwargs
|
|
):
|
|
result_path = os.path.join(save_result_dir, f"{subject_name}_result.csv")
|
|
if not overwrite and os.path.exists(result_path):
|
|
print(f"{result_path} existed, skip!")
|
|
score = []
|
|
for (_, datarow), (_, resultrow) in zip(
|
|
test_df.iterrows(), pd.read_csv(result_path).iterrows()
|
|
):
|
|
# pred = extract_answer(resultrow['model_response'], datarow)
|
|
pred = resultrow["model_output"]
|
|
correct = 1 if pred == datarow["answer"] else 0
|
|
score.append(correct)
|
|
return score
|
|
|
|
result = []
|
|
score = []
|
|
|
|
for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
|
|
question = format_example(row)
|
|
|
|
response, _ = model.chat(
|
|
tokenizer,
|
|
question,
|
|
history=None,
|
|
)
|
|
print(question)
|
|
print(response)
|
|
pred = extract_answer(response, row)
|
|
print(pred)
|
|
print("======================")
|
|
|
|
if "answer" in row:
|
|
correct = 1 if pred == row["answer"] else 0
|
|
score.append(correct)
|
|
if args.debug:
|
|
print(f'{question} pred: {pred} ref: {row["answer"]}')
|
|
result.append(pred)
|
|
|
|
if save_result_dir:
|
|
test_df["model_output"] = result
|
|
test_df["model_response"] = response
|
|
if score:
|
|
test_df["correctness"] = score
|
|
os.makedirs(save_result_dir, exist_ok=True)
|
|
test_df.to_csv(
|
|
os.path.join(save_result_dir, f"{subject_name}_result.csv"),
|
|
encoding="utf-8",
|
|
index=False,
|
|
)
|
|
|
|
return score
|
|
|
|
|
|
def cal_mmlu(res):
|
|
acc_sum_dict = dict()
|
|
acc_norm_sum_dict = dict()
|
|
cnt_dict = dict()
|
|
acc_sum = 0.0
|
|
cnt = 0
|
|
|
|
for class_ in TASK_NAME_MAPPING.keys():
|
|
acc_sum_dict[class_] = 0.0
|
|
acc_norm_sum_dict[class_] = 0.0
|
|
cnt_dict[class_] = 0.0
|
|
|
|
for tt in TASK_NAME_MAPPING[class_]:
|
|
acc_sum += sum(res[tt])
|
|
cnt += len(res[tt])
|
|
|
|
acc_sum_dict[class_] += sum(res[tt])
|
|
cnt_dict[class_] += len(res[tt])
|
|
|
|
print("\n\n\n")
|
|
for k in TASK_NAME_MAPPING.keys():
|
|
if k in cnt_dict:
|
|
print("%s ACC: %.2f " % (k, acc_sum_dict[k] * 100 / cnt_dict[k]))
|
|
print("AVERAGE ACC:%.2f " % (acc_sum * 100 / cnt))
|
|
|
|
|
|
def main(args):
|
|
print("loading model weights")
|
|
if args.checkpoint_path is not None:
|
|
model, tokenizer = load_models_tokenizer(args)
|
|
else:
|
|
model, tokenizer = None, None
|
|
print("model loaded")
|
|
|
|
dev_result = {}
|
|
for subject_name in tqdm(SUBJECTS):
|
|
# val_file_path = os.path.join(args.eval_data_path, 'val', f'{subject_name}_val.csv')
|
|
# dev_file_path = os.path.join(args.eval_data_path, 'dev', f'{subject_name}_dev.csv')
|
|
test_file_path = os.path.join(
|
|
args.eval_data_path, "test", f"{subject_name}_test.csv"
|
|
)
|
|
# val_df = pd.read_csv(val_file_path, names=['question','A','B','C','D','answer'])
|
|
# dev_df = pd.read_csv(dev_file_path, names=['question','A','B','C','D','answer'])
|
|
test_df = pd.read_csv(
|
|
test_file_path, names=["question", "A", "B", "C", "D", "answer"]
|
|
)
|
|
|
|
score = eval_subject(
|
|
model,
|
|
tokenizer,
|
|
subject_name,
|
|
test_df,
|
|
save_result_dir=f"outs_chat/mmlu_eval_result",
|
|
overwrite=args.overwrite,
|
|
)
|
|
dev_result[subject_name] = score
|
|
cal_mmlu(dev_result)
|
|
|
|
|
|
TASK_NAME_MAPPING = {
|
|
"stem": [
|
|
"abstract_algebra",
|
|
"anatomy",
|
|
"astronomy",
|
|
"college_biology",
|
|
"college_chemistry",
|
|
"college_computer_science",
|
|
"college_mathematics",
|
|
"college_physics",
|
|
"computer_security",
|
|
"conceptual_physics",
|
|
"electrical_engineering",
|
|
"elementary_mathematics",
|
|
"high_school_biology",
|
|
"high_school_chemistry",
|
|
"high_school_computer_science",
|
|
"high_school_mathematics",
|
|
"high_school_physics",
|
|
"high_school_statistics",
|
|
"machine_learning",
|
|
],
|
|
"Humanities": [
|
|
"formal_logic",
|
|
"high_school_european_history",
|
|
"high_school_us_history",
|
|
"high_school_world_history",
|
|
"international_law",
|
|
"jurisprudence",
|
|
"logical_fallacies",
|
|
"moral_disputes",
|
|
"moral_scenarios",
|
|
"philosophy",
|
|
"prehistory",
|
|
"professional_law",
|
|
"world_religions",
|
|
],
|
|
"other": [
|
|
"business_ethics",
|
|
"college_medicine",
|
|
"human_aging",
|
|
"management",
|
|
"marketing",
|
|
"medical_genetics",
|
|
"miscellaneous",
|
|
"nutrition",
|
|
"professional_accounting",
|
|
"professional_medicine",
|
|
"virology",
|
|
"global_facts",
|
|
"clinical_knowledge",
|
|
],
|
|
"social": [
|
|
"econometrics",
|
|
"high_school_geography",
|
|
"high_school_government_and_politics",
|
|
"high_school_macroeconomics",
|
|
"high_school_microeconomics",
|
|
"high_school_psychology",
|
|
"human_sexuality",
|
|
"professional_psychology",
|
|
"public_relations",
|
|
"security_studies",
|
|
"sociology",
|
|
"us_foreign_policy",
|
|
],
|
|
}
|
|
SUBJECTS = [v for vl in TASK_NAME_MAPPING.values() for v in vl]
|
|
choices = ["A", "B", "C", "D"]
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Test HF checkpoint.")
|
|
parser.add_argument(
|
|
"-c",
|
|
"--checkpoint-path",
|
|
type=str,
|
|
help="Checkpoint path",
|
|
default="Qwen/Qwen-7B-Chat",
|
|
)
|
|
parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed")
|
|
|
|
# Provide extra arguments required for tasks
|
|
group = parser.add_argument_group(title="Evaluation options")
|
|
group.add_argument("-d", "--eval_data_path", type=str, help="Path to eval data")
|
|
group.add_argument(
|
|
"--debug", action="store_true", default=False, help="Print infos."
|
|
)
|
|
group.add_argument(
|
|
"--overwrite",
|
|
action="store_true",
|
|
default=False,
|
|
help="Overwrite existed results",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
set_seed(args.seed)
|
|
|
|
main(args)
|