|
|
# Copyright (c) Alibaba Cloud.
|
|
|
#
|
|
|
# This source code is licensed under the license found in the
|
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
import torch
|
|
|
import argparse
|
|
|
from pathlib import Path
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
|
|
from transformers.trainer_utils import set_seed
|
|
|
|
|
|
|
|
|
def demo_qwen_pretrain(args):
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
args.checkpoint_path, trust_remote_code=True
|
|
|
)
|
|
|
print("load tokenizer")
|
|
|
max_memory = f"{int(torch.cuda.mem_get_info()[0] / 1024 ** 3) - 2}GB"
|
|
|
|
|
|
n_gpus = torch.cuda.device_count()
|
|
|
max_memory = {i: max_memory for i in range(n_gpus)}
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
|
args.checkpoint_path,
|
|
|
device_map="cuda:0",
|
|
|
max_memory=max_memory,
|
|
|
trust_remote_code=True,
|
|
|
).eval()
|
|
|
inputs = tokenizer(
|
|
|
"蒙古国的首都是乌兰巴托(Ulaanbaatar)\n冰岛的首都是雷克雅未克(Reykjavik)\n埃塞俄比亚的首都是",
|
|
|
return_tensors="pt",
|
|
|
)
|
|
|
inputs = inputs.to(model.device)
|
|
|
pred = model.generate(inputs=inputs["input_ids"])
|
|
|
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
|
|
|
|
|
|
|
|
def demo_qwen_chat(args):
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
args.checkpoint_path, trust_remote_code=True
|
|
|
)
|
|
|
print("load tokenizer")
|
|
|
max_memory = f"{int(torch.cuda.mem_get_info()[0] / 1024 ** 3) - 2}GB"
|
|
|
|
|
|
n_gpus = torch.cuda.device_count()
|
|
|
max_memory = {i: max_memory for i in range(n_gpus)}
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
|
args.checkpoint_path,
|
|
|
device_map="cuda:0",
|
|
|
max_memory=max_memory,
|
|
|
trust_remote_code=True,
|
|
|
).eval()
|
|
|
queries = [
|
|
|
"请问把大象关冰箱总共要几步?",
|
|
|
"1+3=?",
|
|
|
"请将下面这句话翻译为英文:在哪里跌倒就在哪里趴着",
|
|
|
]
|
|
|
history = None
|
|
|
for turn_idx, query in enumerate(queries, start=1):
|
|
|
response, history = model.chat(
|
|
|
tokenizer,
|
|
|
query,
|
|
|
history=history,
|
|
|
)
|
|
|
print(f"===== Turn {turn_idx} ====")
|
|
|
print("Query:", query, end="\n")
|
|
|
print("Response:", response, end="\n")
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
parser = argparse.ArgumentParser(description="Test HF checkpoint.")
|
|
|
parser.add_argument("-c", "--checkpoint-path", type=Path, help="Checkpoint path")
|
|
|
parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed")
|
|
|
parser.add_argument("--gpu", type=int, default=0, help="gpu id")
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
set_seed(args.seed)
|
|
|
|
|
|
if 'chat' in args.checkpoint_path.lower():
|
|
|
demo_qwen_chat(args)
|
|
|
else:
|
|
|
demo_qwen_pretrain(args) |