You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

344 lines
10 KiB
Python

import os
import pandas as pd
import numpy as np
import argparse
import datasets
import torch
from collections import defaultdict
from typing import List
from tqdm import tqdm
from transformers.trainer_utils import set_seed
"""
wget https://huggingface.co/datasets/haonan-li/cmmlu/resolve/main/cmmlu_v1_0_1.zip
mkdir data/cmmlu
mv cmmlu_v1_0_1.zip data/cmmlu
cd data/cmmlu; unzip cmmlu_v1_0_1.zip
cd ../../
python evaluate_cmmlu.py -d data/cmmlu/
"""
def load_models_tokenizer(args):
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
tokenizer = AutoTokenizer.from_pretrained(
args.checkpoint_path,
pad_token='<|extra_0|>',
eos_token='<|endoftext|>',
padding_side='left',
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
args.checkpoint_path,
pad_token_id=tokenizer.pad_token_id,
device_map="auto",
trust_remote_code=True
).eval()
model.generation_config = GenerationConfig.from_pretrained(
args.checkpoint_path,
pad_token_id=tokenizer.pad_token_id,
trust_remote_code=True
)
return model, tokenizer
def format_example(line, include_answer=True):
example = "问题:" + line["Question"]
for choice in choices:
example += f'\n{choice}. {line[f"{choice}"]}'
if include_answer:
example += "\n答案:" + line["Answer"] + "\n\n"
else:
example += "\n答案:"
return example
def generate_few_shot_prompt(k, subject, dev_df):
prompt = ""
if k == -1:
k = dev_df.shape[0]
for i in range(k):
prompt += format_example(
dev_df.iloc[i, :],
include_answer=True,
)
return prompt
def get_logits(tokenizer, model, inputs: List[str]):
input_ids = tokenizer(inputs, padding='longest')["input_ids"]
input_ids = torch.tensor(input_ids, device=model.device)
tokens = {"input_ids": input_ids}
attention_mask = input_ids.ne(tokenizer.pad_token_id)
outputs = model(input_ids, attention_mask=attention_mask)["logits"]
logits = outputs[:, -1, :]
log_probs = torch.nn.functional.softmax(logits, dim=-1)
return log_probs, {"tokens": tokens}
@torch.no_grad()
def eval_subject(
model,
tokenizer,
subject_name,
test_df,
k=5,
dev_df=None,
few_shot=False,
save_result_dir=None,
batch_size=1,
**kwargs,
):
result = []
score = []
few_shot_prompt = (
generate_few_shot_prompt(k, subject_name, dev_df) if few_shot else []
)
all_probs = {"prob_A": [], "prob_B": [], "prob_C": [], "prob_D": []}
if args.debug:
print(f"few_shot_prompt: {few_shot_prompt}")
choices_ids = torch.tensor(
tokenizer("A")["input_ids"] + tokenizer("B")["input_ids"] +
tokenizer("C")["input_ids"] + tokenizer("D")["input_ids"]
).unsqueeze(0).to(model.device)
idx_list = list(range(0, len(test_df), batch_size))
for i in tqdm(idx_list):
full_prompt_list = []
answer_list = []
for row in test_df.iloc[i:i+batch_size].to_dict(orient='records'):
question = format_example(row, include_answer=False)
full_prompt = few_shot_prompt + question
full_prompt_list.append(full_prompt)
if 'Answer' in row:
answer_list.append(row['Answer'])
logits, input_info = get_logits(tokenizer, model, full_prompt_list)
softval = logits.gather(1, choices_ids.expand(logits.size(0), -1)).softmax(1)
if softval.dtype in {torch.bfloat16, torch.float16}:
softval = softval.to(dtype=torch.float32)
probs = softval.detach().cpu().numpy()
for i in range(len(probs)):
for j, choice in enumerate(choices):
all_probs[f"prob_{choice}"].append(probs[i][j])
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs[i])]
if answer_list != []:
correct = 1 if pred == answer_list[i] else 0
score.append(correct)
if args.debug:
print(f'{question} pred: {pred} ref: {answer_list[i]}')
result.append(pred)
if score:
correct_ratio = 100 * sum(score) / len(score)
if args.debug:
print(subject_name, correct_ratio)
else:
correct_ratio = 0
if save_result_dir:
test_df["model_output"] = result
for i, choice in enumerate(choices):
test_df[f"prob_{choice}"] = all_probs[f"prob_{choice}"]
if score:
test_df["correctness"] = score
os.makedirs(save_result_dir, exist_ok=True)
test_df.to_csv(
os.path.join(save_result_dir, f"{subject_name}_result.csv"),
encoding="utf-8",
index=False,
)
return correct_ratio
def cal_cmmlu(res):
print("\n\n\n")
res = {k.split("-")[-1]: float(v) for k, v in res.items()}
for k, v in TASK_NAME_MAPPING.items():
avg_acc = np.mean(list(map(lambda x: res[x], v)))
print(f"{k} acc: {avg_acc:.2f}")
avg_all_acc = np.mean(list(res.values()))
print(f"AVERAGE acc: {avg_all_acc:.2f}")
subcategories = {
"agronomy": ["other"],
"anatomy": ["biology"],
"ancient_chinese": ["linguistics", "china specific"],
"arts": ["arts"],
"astronomy": ["physics"],
"business_ethics": ["business"],
"chinese_civil_service_exam": ["politics", "china specific"],
"chinese_driving_rule": ["other", "china specific"],
"chinese_food_culture": ["culture", "china specific"],
"chinese_foreign_policy": ["politics", "china specific"],
"chinese_history": ["history", "china specific"],
"chinese_literature": ["literature", "china specific"],
"chinese_teacher_qualification": ["education", "china specific"],
"college_actuarial_science": ["math"],
"college_education": ["education"],
"college_engineering_hydrology": ["engineering"],
"college_law": ["law"],
"college_mathematics": ["math"],
"college_medical_statistics": ["statistics"],
"clinical_knowledge": ["other"],
"college_medicine": ["other"],
"computer_science": ["computer science"],
"computer_security": ["other"],
"conceptual_physics": ["physics"],
"construction_project_management": ["other", "china specific"],
"economics": ["economics"],
"education": ["education"],
"elementary_chinese": ["linguistics", "china specific"],
"elementary_commonsense": ["other", "china specific"],
"elementary_information_and_technology": ["other"],
"electrical_engineering": ["engineering"],
"elementary_mathematics": ["math"],
"ethnology": ["culture", "china specific"],
"food_science": ["other"],
"genetics": ["biology"],
"global_facts": ["global"],
"high_school_biology": ["biology"],
"high_school_chemistry": ["chemistry"],
"high_school_geography": ["geography"],
"high_school_mathematics": ["math"],
"high_school_physics": ["physics"],
"high_school_politics": ["politics", "china specific"],
"human_sexuality": ["other"],
"international_law": ["law"],
"journalism": ["sociology"],
"jurisprudence": ["law"],
"legal_and_moral_basis": ["other"],
"logical": ["philosophy"],
"machine_learning": ["computer science"],
"management": ["business"],
"marketing": ["business"],
"marxist_theory": ["philosophy"],
"modern_chinese": ["linguistics", "china specific"],
"nutrition": ["other"],
"philosophy": ["philosophy"],
"professional_accounting": ["business"],
"professional_law": ["law"],
"professional_medicine": ["other"],
"professional_psychology": ["psychology"],
"public_relations": ["politics"],
"security_study": ["politics"],
"sociology": ["culture"],
"sports_science": ["other"],
"traditional_chinese_medicine": ["other", "china specific"],
"virology": ["biology"],
"world_history": ["history"],
"world_religions": ["global"],
}
categories = {
"STEM": [
"physics",
"chemistry",
"biology",
"computer science",
"math",
"engineering",
"statistics",
],
"Humanities": ["history", "philosophy", "law", "arts", "literature", "global"],
"Social Science": [
"linguistics",
"business",
"politics",
"culture",
"economics",
"geography",
"psychology",
"education",
"sociology",
],
"Other": ["other"],
"China specific": ["china specific"],
}
TASK_NAME_MAPPING = defaultdict(list)
for k, v in categories.items():
for subject, subcat in subcategories.items():
for c in subcat:
if c in v:
TASK_NAME_MAPPING[k].append(subject)
choices = ["A", "B", "C", "D"]
def main(args):
model, tokenizer = load_models_tokenizer(args)
test_result = {}
for subject_name in tqdm(subcategories.keys()):
dev_file_path = os.path.join(args.eval_data_path, "dev", f"{subject_name}.csv")
test_file_path = os.path.join(
args.eval_data_path, "test", f"{subject_name}.csv"
)
dev_df = pd.read_csv(dev_file_path)
test_df = pd.read_csv(test_file_path)
score = eval_subject(
model,
tokenizer,
subject_name,
dev_df=dev_df,
test_df=test_df,
k=5,
few_shot=True,
save_result_dir=f"outs/cmmlu_eval_result",
batch_size=args.batch_size
)
test_result[subject_name] = score
cal_cmmlu(test_result)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Test HF checkpoint.")
parser.add_argument(
"-c",
"--checkpoint-path",
type=str,
help="Checkpoint path",
default="Qwen/Qwen-7B",
)
parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed")
"""Provide extra arguments required for tasks."""
group = parser.add_argument_group(title="Evaluation options")
group.add_argument(
"-d", "--eval_data_path", type=str, required=True, help="Path to eval data"
)
group.add_argument(
"--max-seq-len",
type=int,
default=2048,
help="Size of the output generated text.",
)
group.add_argument(
"--debug", action="store_true", default=False, help="Print infos."
)
group.add_argument(
"--batch-size",
type=int,
default=1,
help="batch size",
)
args = parser.parse_args()
set_seed(args.seed)
main(args)