You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
309 lines
11 KiB
Python
309 lines
11 KiB
Python
import argparse
|
|
import json
|
|
import os
|
|
import pprint
|
|
|
|
import json5
|
|
import jsonlines
|
|
from rouge_score import rouge_scorer
|
|
from tqdm import tqdm
|
|
from transformers import Agent, AutoModelForCausalLM, AutoTokenizer
|
|
from transformers.generation import GenerationConfig
|
|
from transformers.tools.evaluate_agent import evaluate_agent
|
|
from transformers.trainer_utils import set_seed
|
|
|
|
data_root_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),
|
|
'data')
|
|
|
|
|
|
def is_callable(response, golden):
|
|
return response['action'].strip().lower() == golden['action'].strip(
|
|
).lower()
|
|
|
|
|
|
def process_res(response):
|
|
# parse response
|
|
response += '\n' # fix not-find bug
|
|
thought = response[:response.find('Action:')].strip()
|
|
action = response[response.find('Action:') +
|
|
len('Action:'):response.find('Action Input:')].strip()
|
|
action_input = response[response.find('Action Input:') +
|
|
len('Action Input:'):response.find('Observation:'
|
|
)].strip()
|
|
#TODO: This parsing result is incorrect if the response contains multiple Actions. To be fixed in the future.
|
|
observation = response[response.find('Observation:') +
|
|
len('Observation:'):response.rfind('Thought:'
|
|
)].strip()
|
|
thought_last = response[response.rfind('Thought:') +
|
|
len('Thought:'):response.find('Final Answer:'
|
|
)].strip()
|
|
final_answer = response[response.find('Final Answer:') +
|
|
len('Final Answer:'):].strip()
|
|
try:
|
|
action_input = json.dumps(json5.loads(action_input),
|
|
ensure_ascii=False,
|
|
sort_keys=True)
|
|
except:
|
|
# print("JSON Load Error:", action_input)
|
|
pass
|
|
res_dict = {
|
|
'thought': thought,
|
|
'action': action,
|
|
'action_input': action_input,
|
|
'observation': observation,
|
|
'thought_last': thought_last,
|
|
'final_answer': final_answer
|
|
}
|
|
return res_dict
|
|
|
|
|
|
class _DummyTokenizer:
|
|
def tokenize(self, text: str):
|
|
return text.split()
|
|
|
|
|
|
def _get_tokenized_string(tokenizer, text_list):
|
|
token_ids_list, tokenized_string_list = [], []
|
|
for text in text_list:
|
|
assert tokenizer is not None
|
|
token_ids = tokenizer.encode(text)
|
|
tokens_bytes = tokenizer.convert_ids_to_tokens(token_ids)
|
|
tokens = [
|
|
token.decode('utf-8', errors='replace') for token in tokens_bytes
|
|
]
|
|
tokenized_string = ' '.join(tokens)
|
|
token_ids_list.append(token_ids)
|
|
tokenized_string_list.append(tokenized_string)
|
|
return token_ids_list, tokenized_string_list
|
|
|
|
|
|
def eval_action(job):
|
|
response = job['gen'][0]
|
|
golden = job['response']
|
|
|
|
if 'Action:' in response:
|
|
response, golden = process_res(response), process_res(golden)
|
|
if is_callable(response, golden):
|
|
return True
|
|
return False
|
|
|
|
|
|
def eval_action_input(job, tokenizer):
|
|
response = job['gen'][0]
|
|
golden = job['response']
|
|
response, golden = process_res(response), process_res(golden)
|
|
query = job['prompt']
|
|
|
|
job = {}
|
|
job['prompt'] = query
|
|
job['gen'] = response['action_input']
|
|
job['response'] = golden['action_input']
|
|
|
|
job['_gen_tok'], job['_gen_tok_str'] = _get_tokenized_string(
|
|
tokenizer, [response['action_input']])
|
|
job['_reference_tok'], job['_reference_tok_str'] = _get_tokenized_string(
|
|
tokenizer, [golden['action_input']])
|
|
|
|
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'],
|
|
tokenizer=_DummyTokenizer())
|
|
score = scorer.score(job['_reference_tok_str'][0], job['_gen_tok_str'][0])
|
|
|
|
rouge = score['rougeL'].fmeasure
|
|
|
|
return rouge
|
|
|
|
|
|
class QWenAgent(Agent):
|
|
"""
|
|
Agent that uses QWen model and tokenizer to generate code.
|
|
|
|
Example:
|
|
|
|
```py
|
|
agent = QWenAgent()
|
|
agent.run("Draw me a picture of rivers and lakes.")
|
|
```
|
|
"""
|
|
def __init__(self,
|
|
chat_prompt_template=None,
|
|
run_prompt_template=None,
|
|
additional_tools=None,
|
|
tokenizer=None,
|
|
model=None):
|
|
if tokenizer and model:
|
|
self.tokenizer = tokenizer
|
|
self.model = model
|
|
else:
|
|
checkpoint = 'Qwen/Qwen-7B-Chat'
|
|
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
checkpoint, trust_remote_code=True)
|
|
self.model = AutoModelForCausalLM.from_pretrained(
|
|
checkpoint, device_map='auto',
|
|
trust_remote_code=True).cuda().eval()
|
|
self.model.generation_config = GenerationConfig.from_pretrained(
|
|
checkpoint, trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
|
|
self.model.generation_config.do_sample = False # greedy
|
|
|
|
super().__init__(
|
|
chat_prompt_template=chat_prompt_template,
|
|
run_prompt_template=run_prompt_template,
|
|
additional_tools=additional_tools,
|
|
)
|
|
|
|
def generate_one(self, prompt, stop):
|
|
# "Human:" 和 "Assistant:" 曾为通义千问的特殊保留字,需要替换为 "_HUMAN_:" 和 "_ASSISTANT_:"。这一问题将在未来版本修复。
|
|
prompt = prompt.replace('Human:',
|
|
'_HUMAN_:').replace('Assistant:',
|
|
'_ASSISTANT_:')
|
|
stop = [
|
|
item.replace('Human:', '_HUMAN_:').replace('Assistant:',
|
|
'_ASSISTANT_:')
|
|
for item in stop
|
|
]
|
|
|
|
result, _ = self.model.chat(self.tokenizer, prompt, history=None)
|
|
for stop_seq in stop:
|
|
if result.endswith(stop_seq):
|
|
result = result[:-len(stop_seq)]
|
|
|
|
result = result.replace('_HUMAN_:',
|
|
'Human:').replace('_ASSISTANT_:', 'Assistant:')
|
|
return result
|
|
|
|
|
|
def load_models_tokenizer(args):
|
|
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path,
|
|
trust_remote_code=True)
|
|
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path,
|
|
device_map='auto',
|
|
trust_remote_code=True,
|
|
bf16=True,
|
|
use_flash_attn=True).eval()
|
|
model.generation_config = GenerationConfig.from_pretrained(
|
|
args.checkpoint_path, trust_remote_code=True)
|
|
model.generation_config.do_sample = False # use greedy decoding
|
|
return model, tokenizer
|
|
|
|
|
|
def load_jobs(filename):
|
|
jobs = []
|
|
with jsonlines.open(os.path.join(data_root_path, filename),
|
|
mode='r') as reader:
|
|
for job in reader:
|
|
jobs.append(job)
|
|
return jobs
|
|
|
|
|
|
def react_inference(filename, model, tokenizer):
|
|
filename_cache = filename + '.cache'
|
|
if os.path.exists(os.path.join(data_root_path, filename_cache)):
|
|
jobs = load_jobs(filename=filename_cache)
|
|
print('Loaded from', filename_cache)
|
|
else:
|
|
with open(os.path.join(data_root_path, filename_cache), 'w') as f:
|
|
jobs = load_jobs(filename=filename)
|
|
print('Inference:', filename)
|
|
for job in tqdm(jobs):
|
|
response, history = model.chat(tokenizer,
|
|
job['prompt'],
|
|
history=None)
|
|
job['gen'] = [response]
|
|
f.writelines(json.dumps(job, ensure_ascii=False) + '\n')
|
|
print(filename_cache, 'is saved.')
|
|
return jobs
|
|
|
|
|
|
def main(args):
|
|
print('loading model weights')
|
|
if args.checkpoint_path is not None:
|
|
model, tokenizer = load_models_tokenizer(args)
|
|
else:
|
|
model, tokenizer = None, None
|
|
print('model loaded')
|
|
|
|
result = {}
|
|
# eval react positive
|
|
if args.eval_react_positive:
|
|
print('eval react positive ...')
|
|
acc_count = 0
|
|
rouge_mean = 0
|
|
jobs = react_inference(filename=args.eval_react_positive_filename,
|
|
model=model,
|
|
tokenizer=tokenizer)
|
|
for job in jobs:
|
|
if eval_action(job):
|
|
acc_count += 1
|
|
rouge = eval_action_input(job, tokenizer)
|
|
rouge_mean += (rouge / len(jobs))
|
|
|
|
scores = {
|
|
'action_right_rate': acc_count / len(jobs),
|
|
'action_input_rouge': rouge_mean,
|
|
}
|
|
|
|
result.update({'react_positive': scores})
|
|
|
|
# eval react negative
|
|
if args.eval_react_negative:
|
|
print('eval react negative ...')
|
|
bad_count = 0
|
|
jobs = react_inference(filename=args.eval_react_negative_filename,
|
|
model=model,
|
|
tokenizer=tokenizer)
|
|
for job in jobs:
|
|
if '\nAction:' in job['gen'][0]:
|
|
bad_count += 1
|
|
scores = {'bad_rate': bad_count / len(jobs)}
|
|
result.update({'react_negative': scores})
|
|
|
|
# eval hfagent
|
|
if args.eval_hfagent:
|
|
print('eval hfagent ...')
|
|
agent = QWenAgent(model=model, tokenizer=tokenizer)
|
|
scores = evaluate_agent(agent, verbose=False, return_errors=False)
|
|
result.update({'hfagent': scores})
|
|
|
|
pp = pprint.PrettyPrinter(indent=4)
|
|
pp.pprint(result)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Test HF checkpoint.')
|
|
parser.add_argument('-c',
|
|
'--checkpoint-path',
|
|
type=str,
|
|
help='Checkpoint path',
|
|
default='Qwen/Qwen-7B-Chat')
|
|
parser.add_argument('-s',
|
|
'--seed',
|
|
type=int,
|
|
default=1234,
|
|
help='Random seed')
|
|
"""Provide extra arguments required for tasks."""
|
|
group = parser.add_argument_group(title='Evaluation options')
|
|
group.add_argument('--eval-react-positive',
|
|
action='store_true',
|
|
default=False,
|
|
help='Eval react positive.')
|
|
group.add_argument('--eval-react-positive-filename',
|
|
type=str,
|
|
default='exam_plugin_v1_react_positive.jsonl',
|
|
help='Eval react positive filename.')
|
|
group.add_argument('--eval-react-negative',
|
|
action='store_true',
|
|
default=False,
|
|
help='Eval react negative.')
|
|
group.add_argument('--eval-react-negative-filename',
|
|
type=str,
|
|
default='exam_plugin_v1_react_negative.jsonl',
|
|
help='Eval react negative filename.')
|
|
group.add_argument('--eval-hfagent',
|
|
action='store_true',
|
|
default=False,
|
|
help='Eval hfagent.')
|
|
|
|
args = parser.parse_args()
|
|
set_seed(args.seed)
|
|
|
|
main(args)
|