|
|
import os
|
|
|
import pandas as pd
|
|
|
import numpy as np
|
|
|
import argparse
|
|
|
import datasets
|
|
|
import torch
|
|
|
import re
|
|
|
from thefuzz import process
|
|
|
from typing import List
|
|
|
from tqdm import tqdm
|
|
|
from transformers.trainer_utils import set_seed
|
|
|
|
|
|
'''
|
|
|
wget https://huggingface.co/datasets/ceval/ceval-exam/resolve/main/ceval-exam.zip
|
|
|
mkdir data/ceval
|
|
|
mv ceval-exam.zip data/ceval
|
|
|
cd data/ceval; unzip ceval-exam.zip
|
|
|
cd ../../
|
|
|
|
|
|
pip install thefuzz
|
|
|
python eval/evaluate_chat_ceval.py -d data/ceval
|
|
|
'''
|
|
|
|
|
|
def load_models_tokenizer(args):
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
from transformers.generation import GenerationConfig
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True)
|
|
|
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True, bf16=True, use_flash_attn=True).eval()
|
|
|
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True)
|
|
|
model.generation_config.do_sample = False # use greedy decoding
|
|
|
return model, tokenizer
|
|
|
|
|
|
def process_before_extraction(gen, question, choice_dict):
|
|
|
# Example Prompt:
|
|
|
# 关于传输层的面向连接服务的特性是____。
|
|
|
# A. 既不保证可靠,也不保证按序交付
|
|
|
# B. 不保证可靠,但保证按序交付
|
|
|
# C. 保证可靠,但不保证按序交付
|
|
|
# D. 既保证可靠,也保证按序交付
|
|
|
# Example Model Output:
|
|
|
# 关于传输层的面向连接服务的特性是既保证可靠,也保证按序交付
|
|
|
# Processed Output:
|
|
|
# 答案是D
|
|
|
|
|
|
question_split = question.rstrip("。").split("。")[-1].split("_")
|
|
|
|
|
|
# replacing the question
|
|
|
if len(question_split[0].strip()) > 4:
|
|
|
gen = gen.replace(question_split[0], "答案是")
|
|
|
if len(question_split[-1].strip()) > 4:
|
|
|
gen = gen.replace(question_split[-1], "")
|
|
|
|
|
|
# replace the choice by letter in the generated sentence
|
|
|
# from longest one to shortest one
|
|
|
for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True):
|
|
|
gen = gen.replace(val.rstrip("。"), key)
|
|
|
return gen
|
|
|
|
|
|
def count_substr(gen, pattern):
|
|
|
return len(re.findall(pattern, gen))
|
|
|
|
|
|
def extract_choice(gen, prompt, choice_list):
|
|
|
# 答案是A | 选项是A | 应该选A选项
|
|
|
res = re.search(r"(?:(?:选|选择|选定)|(?:(?:答案|选项)(?![^ABCD]{0,10}?(?:不|非)[^ABCD]{0,10}?(?:是|为|:|:|】))[^ABCD]{0,10}?(?:是|为|:|:|】))[^ABCD]{0,10}?)(A|B|C|D)(?:选项)?(?:\)|。|\.|,|,|.|、|A|B|C|D|$)", gen)
|
|
|
|
|
|
# A选项正确 | A选项符合题意
|
|
|
if res is None:
|
|
|
res = re.search(r"(A|B|C|D)(?:选?项)?(?![^ABCD]{0,4}?(?:不|非)[^ABCD]{0,4}?(?:正确|对|符合))[^ABCD]{0,4}?(?:正确|对|符合)", gen)
|
|
|
|
|
|
# 直接输出 A
|
|
|
if res is None:
|
|
|
res = re.search(r"^(A|B|C|D)(?:。|\.|,|,|.|$)", gen)
|
|
|
|
|
|
# 获取第一个出现的字母
|
|
|
if res is None:
|
|
|
res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen)
|
|
|
|
|
|
if res is None:
|
|
|
return choices[choice_list.index(process.extractOne(gen, choice_list)[0])]
|
|
|
else:
|
|
|
return res.group(1)
|
|
|
|
|
|
def format_example(line):
|
|
|
example = line['question'] + "\n\n"
|
|
|
for choice in choices:
|
|
|
example += f'{choice}. {line[f"{choice}"]}\n'
|
|
|
return example
|
|
|
|
|
|
def extract_answer(response, row):
|
|
|
prompt = row['question']
|
|
|
gen = process_before_extraction(response, prompt, {choice: row[choice] for choice in choices})
|
|
|
if not isinstance(prompt, str):
|
|
|
prompt = prompt[0]
|
|
|
pred = extract_choice(gen, prompt, [row[choice] for choice in choices])
|
|
|
return pred
|
|
|
|
|
|
@torch.no_grad()
|
|
|
def eval_subject(
|
|
|
model,
|
|
|
tokenizer,
|
|
|
subject_name,
|
|
|
test_df,
|
|
|
save_result_dir=None,
|
|
|
overwrite=False,
|
|
|
**kwargs
|
|
|
):
|
|
|
|
|
|
result_path = os.path.join(save_result_dir, f'{subject_name}_result.csv')
|
|
|
if not overwrite and os.path.exists(result_path):
|
|
|
print(f"{result_path} existed, skip!")
|
|
|
score = []
|
|
|
for (_, datarow), (_, resultrow) in zip(test_df.iterrows(), pd.read_csv(result_path).iterrows()):
|
|
|
pred = extract_answer(resultrow['model_response'], datarow)
|
|
|
correct = 1 if pred == datarow['answer'] else 0
|
|
|
score.append(correct)
|
|
|
correct_ratio = 100 * sum(score) / len(score)
|
|
|
return correct_ratio
|
|
|
|
|
|
responses = []
|
|
|
result = []
|
|
|
score = []
|
|
|
|
|
|
for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
|
|
|
question = format_example(row)
|
|
|
|
|
|
response, history = model.chat(
|
|
|
tokenizer,
|
|
|
question,
|
|
|
history=None,
|
|
|
)
|
|
|
print(question)
|
|
|
print(response)
|
|
|
pred = extract_answer(response, row)
|
|
|
print(pred)
|
|
|
print("======================")
|
|
|
|
|
|
if 'answer' in row:
|
|
|
correct = 1 if pred == row['answer'] else 0
|
|
|
score.append(correct)
|
|
|
if args.debug: print(f'{question} pred: {pred} ref: {row["answer"]}')
|
|
|
responses.append(response)
|
|
|
result.append(pred)
|
|
|
|
|
|
if score:
|
|
|
correct_ratio = 100 * sum(score) / len(score)
|
|
|
if args.debug: print(subject_name, correct_ratio)
|
|
|
else:
|
|
|
correct_ratio = 0
|
|
|
if save_result_dir:
|
|
|
test_df['model_response'] = responses
|
|
|
test_df['model_output'] = result
|
|
|
if score:
|
|
|
test_df["correctness"] = score
|
|
|
os.makedirs(save_result_dir, exist_ok=True)
|
|
|
test_df.to_csv(result_path, encoding="utf-8", index=False)
|
|
|
|
|
|
return correct_ratio
|
|
|
|
|
|
|
|
|
def cal_ceval(res):
|
|
|
acc_sum_dict = dict()
|
|
|
acc_norm_sum_dict = dict()
|
|
|
cnt_dict = dict()
|
|
|
acc_sum = 0.
|
|
|
cnt = 0
|
|
|
hard_cnt = 0
|
|
|
hard_acc_sum = 0.
|
|
|
for tt in res.keys():
|
|
|
name = tt.split('-')[-1]
|
|
|
acc_sum += float(res[tt])
|
|
|
cnt += 1
|
|
|
class_ = TASK_NAME_MAPPING[name][2]
|
|
|
if class_ not in acc_sum_dict:
|
|
|
acc_sum_dict[class_] = 0.
|
|
|
acc_norm_sum_dict[class_] = 0.
|
|
|
cnt_dict[class_] = 0.
|
|
|
if name in hard_list:
|
|
|
hard_cnt += 1
|
|
|
hard_acc_sum += float(res[tt])
|
|
|
acc_sum_dict[class_] += float(res[tt])
|
|
|
cnt_dict[class_] += 1
|
|
|
print('\n\n\n')
|
|
|
for k in ['STEM', 'Social Science', 'Humanities', 'Other']:
|
|
|
if k in cnt_dict:
|
|
|
print('%s acc: %.2f ' % (
|
|
|
k, acc_sum_dict[k] / cnt_dict[k]))
|
|
|
if hard_cnt > 0:
|
|
|
print('Hard acc:%.2f ' % (hard_acc_sum / hard_cnt))
|
|
|
print('AVERAGE acc:%.2f ' % (acc_sum / cnt))
|
|
|
|
|
|
|
|
|
TASK_NAME_MAPPING = {
|
|
|
"computer_network": ["Computer Network", "\u8ba1\u7b97\u673a\u7f51\u7edc", "STEM"],
|
|
|
"operating_system": ["Operating System", "\u64cd\u4f5c\u7cfb\u7edf", "STEM"],
|
|
|
"computer_architecture": ["Computer Architecture", "\u8ba1\u7b97\u673a\u7ec4\u6210", "STEM"],
|
|
|
"college_programming": ["College Programming", "\u5927\u5b66\u7f16\u7a0b", "STEM"],
|
|
|
"college_physics": ["College Physics", "\u5927\u5b66\u7269\u7406", "STEM"],
|
|
|
"college_chemistry": ["College Chemistry", "\u5927\u5b66\u5316\u5b66", "STEM"],
|
|
|
"advanced_mathematics": ["Advanced Mathematics", "\u9ad8\u7b49\u6570\u5b66", "STEM"],
|
|
|
"probability_and_statistics": ["Probability and Statistics", "\u6982\u7387\u7edf\u8ba1", "STEM"],
|
|
|
"discrete_mathematics": ["Discrete Mathematics", "\u79bb\u6563\u6570\u5b66", "STEM"],
|
|
|
"electrical_engineer": ["Electrical Engineer", "\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08", "STEM"],
|
|
|
"metrology_engineer": ["Metrology Engineer", "\u6ce8\u518c\u8ba1\u91cf\u5e08", "STEM"],
|
|
|
"high_school_mathematics": ["High School Mathematics", "\u9ad8\u4e2d\u6570\u5b66", "STEM"],
|
|
|
"high_school_physics": ["High School Physics", "\u9ad8\u4e2d\u7269\u7406", "STEM"],
|
|
|
"high_school_chemistry": ["High School Chemistry", "\u9ad8\u4e2d\u5316\u5b66", "STEM"],
|
|
|
"high_school_biology": ["High School Biology", "\u9ad8\u4e2d\u751f\u7269", "STEM"],
|
|
|
"middle_school_mathematics": ["Middle School Mathematics", "\u521d\u4e2d\u6570\u5b66", "STEM"],
|
|
|
"middle_school_biology": ["Middle School Biology", "\u521d\u4e2d\u751f\u7269", "STEM"],
|
|
|
"middle_school_physics": ["Middle School Physics", "\u521d\u4e2d\u7269\u7406", "STEM"],
|
|
|
"middle_school_chemistry": ["Middle School Chemistry", "\u521d\u4e2d\u5316\u5b66", "STEM"],
|
|
|
"veterinary_medicine": ["Veterinary Medicine", "\u517d\u533b\u5b66", "STEM"],
|
|
|
"college_economics": ["College Economics", "\u5927\u5b66\u7ecf\u6d4e\u5b66", "Social Science"],
|
|
|
"business_administration": ["Business Administration", "\u5de5\u5546\u7ba1\u7406", "Social Science"],
|
|
|
"marxism": ["Marxism", "\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406", "Social Science"],
|
|
|
"mao_zedong_thought": ["Mao Zedong Thought", "\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba", "Social Science"],
|
|
|
"education_science": ["Education Science", "\u6559\u80b2\u5b66", "Social Science"],
|
|
|
"teacher_qualification": ["Teacher Qualification", "\u6559\u5e08\u8d44\u683c", "Social Science"],
|
|
|
"high_school_politics": ["High School Politics", "\u9ad8\u4e2d\u653f\u6cbb", "Social Science"],
|
|
|
"high_school_geography": ["High School Geography", "\u9ad8\u4e2d\u5730\u7406", "Social Science"],
|
|
|
"middle_school_politics": ["Middle School Politics", "\u521d\u4e2d\u653f\u6cbb", "Social Science"],
|
|
|
"middle_school_geography": ["Middle School Geography", "\u521d\u4e2d\u5730\u7406", "Social Science"],
|
|
|
"modern_chinese_history": ["Modern Chinese History", "\u8fd1\u4ee3\u53f2\u7eb2\u8981", "Humanities"],
|
|
|
"ideological_and_moral_cultivation": ["Ideological and Moral Cultivation", "\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840", "Humanities"],
|
|
|
"logic": ["Logic", "\u903b\u8f91\u5b66", "Humanities"],
|
|
|
"law": ["Law", "\u6cd5\u5b66", "Humanities"],
|
|
|
"chinese_language_and_literature": ["Chinese Language and Literature", "\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66", "Humanities"],
|
|
|
"art_studies": ["Art Studies", "\u827a\u672f\u5b66", "Humanities"],
|
|
|
"professional_tour_guide": ["Professional Tour Guide", "\u5bfc\u6e38\u8d44\u683c", "Humanities"],
|
|
|
"legal_professional": ["Legal Professional", "\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c", "Humanities"],
|
|
|
"high_school_chinese": ["High School Chinese", "\u9ad8\u4e2d\u8bed\u6587", "Humanities"],
|
|
|
"high_school_history": ["High School History", "\u9ad8\u4e2d\u5386\u53f2", "Humanities"],
|
|
|
"middle_school_history": ["Middle School History", "\u521d\u4e2d\u5386\u53f2", "Humanities"],
|
|
|
"civil_servant": ["Civil Servant", "\u516c\u52a1\u5458", "Other"],
|
|
|
"sports_science": ["Sports Science", "\u4f53\u80b2\u5b66", "Other"],
|
|
|
"plant_protection": ["Plant Protection", "\u690d\u7269\u4fdd\u62a4", "Other"],
|
|
|
"basic_medicine": ["Basic Medicine", "\u57fa\u7840\u533b\u5b66", "Other"],
|
|
|
"clinical_medicine": ["Clinical Medicine", "\u4e34\u5e8a\u533b\u5b66", "Other"],
|
|
|
"urban_and_rural_planner": ["Urban and Rural Planner", "\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08", "Other"],
|
|
|
"accountant": ["Accountant", "\u6ce8\u518c\u4f1a\u8ba1\u5e08", "Other"],
|
|
|
"fire_engineer": ["Fire Engineer", "\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08", "Other"],
|
|
|
"environmental_impact_assessment_engineer": ["Environmental Impact Assessment Engineer", "\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08", "Other"],
|
|
|
"tax_accountant": ["Tax Accountant", "\u7a0e\u52a1\u5e08", "Other"],
|
|
|
"physician": ["Physician", "\u533b\u5e08\u8d44\u683c", "Other"]
|
|
|
}
|
|
|
hard_list = ['advanced_mathematics', 'discrete_mathematics', 'probability_and_statistics', 'college_physics', 'college_chemistry', 'high_school_mathematics', 'high_school_physics', 'high_school_chemistry']
|
|
|
choices = ["A", "B", "C", "D"]
|
|
|
|
|
|
|
|
|
def main(args):
|
|
|
print("loading model weights")
|
|
|
if args.checkpoint_path:
|
|
|
model, tokenizer = load_models_tokenizer(args)
|
|
|
else:
|
|
|
model, tokenizer = None, None
|
|
|
print("model loaded")
|
|
|
dev_result = {}
|
|
|
for subject_name in tqdm(TASK_NAME_MAPPING.keys()):
|
|
|
val_file_path = os.path.join(args.eval_data_path, 'val', f'{subject_name}_val.csv')
|
|
|
# dev_file_path = os.path.join(args.eval_data_path, 'dev', f'{subject_name}_dev.csv')
|
|
|
# test_file_path = os.path.join(args.eval_data_path, 'test', f'{subject_name}_test.csv')
|
|
|
val_df = pd.read_csv(val_file_path)
|
|
|
# dev_df = pd.read_csv(dev_file_path)
|
|
|
# test_df = pd.read_csv(test_file_path)
|
|
|
|
|
|
score = eval_subject(model, tokenizer, subject_name, val_df,
|
|
|
save_result_dir=f"outs_chat/ceval_eval_result", overwrite=args.overwrite)
|
|
|
dev_result[subject_name] = score
|
|
|
cal_ceval(dev_result)
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
parser = argparse.ArgumentParser(description='Test HF checkpoint.')
|
|
|
parser.add_argument('-c', '--checkpoint-path', type=str, help='Checkpoint path', default="Qwen/Qwen-7B-Chat")
|
|
|
parser.add_argument('-s', '--seed', type=int, default=1234, help='Random seed')
|
|
|
|
|
|
"""Provide extra arguments required for tasks."""
|
|
|
group = parser.add_argument_group(title='Evaluation options')
|
|
|
group.add_argument('-d', '--eval_data_path', type=str, required=True,
|
|
|
help='Path to eval data')
|
|
|
group.add_argument("--debug", action='store_true', default=False,
|
|
|
help='Print infos.')
|
|
|
group.add_argument("--overwrite", action='store_true', default=False,
|
|
|
help='Overwrite existed results')
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
set_seed(args.seed)
|
|
|
|
|
|
main(args) |