You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

433 lines
13 KiB
Python

import os
from typing import List
import argparse
import torch
import pandas as pd
import numpy as np
from tqdm import tqdm
from transformers.trainer_utils import set_seed
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
'''
wget https://huggingface.co/datasets/ceval/ceval-exam/resolve/main/ceval-exam.zip
mkdir data/ceval
mv ceval-exam.zip data/ceval
cd data/ceval; unzip ceval-exam.zip
cd ../../
python evaluate_ceval.py -d data/ceval/
'''
def load_models_tokenizer(args):
tokenizer = AutoTokenizer.from_pretrained(
args.checkpoint_path, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
args.checkpoint_path, device_map="auto", trust_remote_code=True
).eval()
model.generation_config = GenerationConfig.from_pretrained(
args.checkpoint_path, trust_remote_code=True
)
return model, tokenizer
def format_example(line, include_answer=True):
example = "问题:" + line["question"]
for choice in choices:
example += f'\n{choice}. {line[f"{choice}"]}'
if include_answer:
example += "\n答案:" + line["answer"] + "\n\n"
else:
example += "\n答案:"
return example
def generate_few_shot_prompt(k, subject, dev_df):
prompt = ""
if k == -1:
k = dev_df.shape[0]
for i in range(k):
prompt += format_example(
dev_df.iloc[i, :],
include_answer=True,
)
return prompt
def get_logits(tokenizer, model, inputs: List[str]):
input_ids = tokenizer(inputs, padding=False)["input_ids"]
input_ids = torch.tensor(input_ids, device=model.device)
tokens = {"input_ids": input_ids}
outputs = model(input_ids)["logits"]
logits = outputs[:, -1, :]
log_probs = torch.nn.functional.softmax(logits, dim=-1)
return log_probs, {"tokens": tokens}
@torch.no_grad()
def eval_subject(
model,
tokenizer,
subject_name,
test_df,
k=5,
dev_df=None,
few_shot=False,
save_result_dir=None,
**kwargs,
):
result = []
score = []
few_shot_prompt = (
generate_few_shot_prompt(k, subject_name, dev_df) if few_shot else ""
)
all_probs = {"prob_A": [], "prob_B": [], "prob_C": [], "prob_D": []}
if args.debug:
print(f"few_shot_prompt: {few_shot_prompt}")
for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
question = format_example(row, include_answer=False)
full_prompt = few_shot_prompt + question
output, input_info = get_logits(tokenizer, model, [full_prompt])
assert output.shape[0] == 1
logits = output.flatten()
softval = torch.nn.functional.softmax(
torch.tensor(
[
logits[tokenizer("A")["input_ids"]],
logits[tokenizer("B")["input_ids"]],
logits[tokenizer("C")["input_ids"]],
logits[tokenizer("D")["input_ids"]],
]
),
dim=0,
)
if softval.dtype in {torch.bfloat16, torch.float16}:
softval = softval.to(dtype=torch.float32)
probs = softval.detach().cpu().numpy()
for i, choice in enumerate(choices):
all_probs[f"prob_{choice}"].append(probs[i])
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs)]
if "answer" in row:
correct = 1 if pred == row["answer"] else 0
score.append(correct)
if args.debug:
print(f'{question} pred: {pred} ref: {row["answer"]}')
result.append(pred)
if score:
correct_ratio = 100 * sum(score) / len(score)
if args.debug:
print(subject_name, correct_ratio)
else:
correct_ratio = 0
if save_result_dir:
test_df["model_output"] = result
for i, choice in enumerate(choices):
test_df[f"prob_{choice}"] = all_probs[f"prob_{choice}"]
if score:
test_df["correctness"] = score
os.makedirs(save_result_dir, exist_ok=True)
test_df.to_csv(
os.path.join(save_result_dir, f"{subject_name}_result.csv"),
encoding="utf-8",
index=False,
)
return correct_ratio
def cal_ceval(res):
acc_sum_dict = dict()
acc_norm_sum_dict = dict()
cnt_dict = dict()
acc_sum = 0.0
cnt = 0
hard_cnt = 0
hard_acc_sum = 0.0
for tt in res.keys():
name = tt.split("-")[-1]
acc_sum += float(res[tt])
cnt += 1
class_ = TASK_NAME_MAPPING[name][2]
if class_ not in acc_sum_dict:
acc_sum_dict[class_] = 0.0
acc_norm_sum_dict[class_] = 0.0
cnt_dict[class_] = 0.0
if name in hard_list:
hard_cnt += 1
hard_acc_sum += float(res[tt])
acc_sum_dict[class_] += float(res[tt])
cnt_dict[class_] += 1
print("\n\n\n")
for k in ["STEM", "Social Science", "Humanities", "Other"]:
if k in cnt_dict:
print("%s acc: %.2f " % (k, acc_sum_dict[k] / cnt_dict[k]))
if hard_cnt > 0:
print("Hard acc:%.2f " % (hard_acc_sum / hard_cnt))
print("AVERAGE acc:%.2f " % (acc_sum / cnt))
TASK_NAME_MAPPING = {
"computer_network": ["Computer Network", "\u8ba1\u7b97\u673a\u7f51\u7edc", "STEM"],
"operating_system": ["Operating System", "\u64cd\u4f5c\u7cfb\u7edf", "STEM"],
"computer_architecture": [
"Computer Architecture",
"\u8ba1\u7b97\u673a\u7ec4\u6210",
"STEM",
],
"college_programming": ["College Programming", "\u5927\u5b66\u7f16\u7a0b", "STEM"],
"college_physics": ["College Physics", "\u5927\u5b66\u7269\u7406", "STEM"],
"college_chemistry": ["College Chemistry", "\u5927\u5b66\u5316\u5b66", "STEM"],
"advanced_mathematics": [
"Advanced Mathematics",
"\u9ad8\u7b49\u6570\u5b66",
"STEM",
],
"probability_and_statistics": [
"Probability and Statistics",
"\u6982\u7387\u7edf\u8ba1",
"STEM",
],
"discrete_mathematics": [
"Discrete Mathematics",
"\u79bb\u6563\u6570\u5b66",
"STEM",
],
"electrical_engineer": [
"Electrical Engineer",
"\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08",
"STEM",
],
"metrology_engineer": [
"Metrology Engineer",
"\u6ce8\u518c\u8ba1\u91cf\u5e08",
"STEM",
],
"high_school_mathematics": [
"High School Mathematics",
"\u9ad8\u4e2d\u6570\u5b66",
"STEM",
],
"high_school_physics": ["High School Physics", "\u9ad8\u4e2d\u7269\u7406", "STEM"],
"high_school_chemistry": [
"High School Chemistry",
"\u9ad8\u4e2d\u5316\u5b66",
"STEM",
],
"high_school_biology": ["High School Biology", "\u9ad8\u4e2d\u751f\u7269", "STEM"],
"middle_school_mathematics": [
"Middle School Mathematics",
"\u521d\u4e2d\u6570\u5b66",
"STEM",
],
"middle_school_biology": [
"Middle School Biology",
"\u521d\u4e2d\u751f\u7269",
"STEM",
],
"middle_school_physics": [
"Middle School Physics",
"\u521d\u4e2d\u7269\u7406",
"STEM",
],
"middle_school_chemistry": [
"Middle School Chemistry",
"\u521d\u4e2d\u5316\u5b66",
"STEM",
],
"veterinary_medicine": ["Veterinary Medicine", "\u517d\u533b\u5b66", "STEM"],
"college_economics": [
"College Economics",
"\u5927\u5b66\u7ecf\u6d4e\u5b66",
"Social Science",
],
"business_administration": [
"Business Administration",
"\u5de5\u5546\u7ba1\u7406",
"Social Science",
],
"marxism": [
"Marxism",
"\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406",
"Social Science",
],
"mao_zedong_thought": [
"Mao Zedong Thought",
"\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba",
"Social Science",
],
"education_science": ["Education Science", "\u6559\u80b2\u5b66", "Social Science"],
"teacher_qualification": [
"Teacher Qualification",
"\u6559\u5e08\u8d44\u683c",
"Social Science",
],
"high_school_politics": [
"High School Politics",
"\u9ad8\u4e2d\u653f\u6cbb",
"Social Science",
],
"high_school_geography": [
"High School Geography",
"\u9ad8\u4e2d\u5730\u7406",
"Social Science",
],
"middle_school_politics": [
"Middle School Politics",
"\u521d\u4e2d\u653f\u6cbb",
"Social Science",
],
"middle_school_geography": [
"Middle School Geography",
"\u521d\u4e2d\u5730\u7406",
"Social Science",
],
"modern_chinese_history": [
"Modern Chinese History",
"\u8fd1\u4ee3\u53f2\u7eb2\u8981",
"Humanities",
],
"ideological_and_moral_cultivation": [
"Ideological and Moral Cultivation",
"\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840",
"Humanities",
],
"logic": ["Logic", "\u903b\u8f91\u5b66", "Humanities"],
"law": ["Law", "\u6cd5\u5b66", "Humanities"],
"chinese_language_and_literature": [
"Chinese Language and Literature",
"\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66",
"Humanities",
],
"art_studies": ["Art Studies", "\u827a\u672f\u5b66", "Humanities"],
"professional_tour_guide": [
"Professional Tour Guide",
"\u5bfc\u6e38\u8d44\u683c",
"Humanities",
],
"legal_professional": [
"Legal Professional",
"\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c",
"Humanities",
],
"high_school_chinese": [
"High School Chinese",
"\u9ad8\u4e2d\u8bed\u6587",
"Humanities",
],
"high_school_history": [
"High School History",
"\u9ad8\u4e2d\u5386\u53f2",
"Humanities",
],
"middle_school_history": [
"Middle School History",
"\u521d\u4e2d\u5386\u53f2",
"Humanities",
],
"civil_servant": ["Civil Servant", "\u516c\u52a1\u5458", "Other"],
"sports_science": ["Sports Science", "\u4f53\u80b2\u5b66", "Other"],
"plant_protection": ["Plant Protection", "\u690d\u7269\u4fdd\u62a4", "Other"],
"basic_medicine": ["Basic Medicine", "\u57fa\u7840\u533b\u5b66", "Other"],
"clinical_medicine": ["Clinical Medicine", "\u4e34\u5e8a\u533b\u5b66", "Other"],
"urban_and_rural_planner": [
"Urban and Rural Planner",
"\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08",
"Other",
],
"accountant": ["Accountant", "\u6ce8\u518c\u4f1a\u8ba1\u5e08", "Other"],
"fire_engineer": [
"Fire Engineer",
"\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08",
"Other",
],
"environmental_impact_assessment_engineer": [
"Environmental Impact Assessment Engineer",
"\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08",
"Other",
],
"tax_accountant": ["Tax Accountant", "\u7a0e\u52a1\u5e08", "Other"],
"physician": ["Physician", "\u533b\u5e08\u8d44\u683c", "Other"],
}
hard_list = [
"advanced_mathematics",
"discrete_mathematics",
"probability_and_statistics",
"college_physics",
"college_chemistry",
"high_school_mathematics",
"high_school_physics",
"high_school_chemistry",
]
choices = ["A", "B", "C", "D"]
def main(args):
model, tokenizer = load_models_tokenizer(args)
dev_result = {}
for subject_name in tqdm(TASK_NAME_MAPPING.keys()):
val_file_path = os.path.join(
args.eval_data_path, "val", f"{subject_name}_val.csv"
)
dev_file_path = os.path.join(
args.eval_data_path, "dev", f"{subject_name}_dev.csv"
)
# test_file_path = os.path.join(args.eval_data_path, 'test', f'{subject_name}_test.csv')
val_df = pd.read_csv(val_file_path)
dev_df = pd.read_csv(dev_file_path)
# test_df = pd.read_csv(test_file_path)
score = eval_subject(
model,
tokenizer,
subject_name,
val_df,
dev_df=dev_df,
k=5,
few_shot=True,
save_result_dir=f"outs/ceval_eval_result",
)
dev_result[subject_name] = score
cal_ceval(dev_result)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Test HF checkpoint.")
parser.add_argument(
"-c",
"--checkpoint-path",
type=str,
help="Checkpoint path",
default="Qwen/Qwen-7B",
)
parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed")
# Provide extra arguments required for tasks
group = parser.add_argument_group(title="Evaluation options")
group.add_argument(
"-d", "--eval_data_path", type=str, required=True, help="Path to eval data"
)
group.add_argument(
"--max-seq-len",
type=int,
default=2048,
help="Size of the output generated text.",
)
group.add_argument(
"--debug", action="store_true", default=False, help="Print infos."
)
args = parser.parse_args()
set_seed(args.seed)
main(args)