|
|
# Reference: https://openai.com/blog/function-calling-and-other-api-updates
|
|
|
|
|
|
import openai
|
|
|
|
|
|
# To start an OpenAI-like Qwen server, use the following commands:
|
|
|
# git clone https://github.com/QwenLM/Qwen-7B;
|
|
|
# cd Qwen-7B;
|
|
|
# pip install fastapi uvicorn openai pydantic sse_starlette;
|
|
|
# python openai_api.py;
|
|
|
#
|
|
|
# Then configure the api_base and api_key in your client:
|
|
|
openai.api_base = "http://localhost:8000/v1"
|
|
|
openai.api_key = "none"
|
|
|
|
|
|
|
|
|
def call_qwen(messages, functions=None):
|
|
|
print(messages)
|
|
|
if functions:
|
|
|
response = openai.ChatCompletion.create(
|
|
|
model="Qwen", messages=messages, functions=functions
|
|
|
)
|
|
|
else:
|
|
|
response = openai.ChatCompletion.create(model="Qwen", messages=messages)
|
|
|
print(response)
|
|
|
print(response.choices[0].message.content)
|
|
|
return response
|
|
|
|
|
|
|
|
|
def test_1():
|
|
|
messages = [{"role": "user", "content": "你好"}]
|
|
|
call_qwen(messages)
|
|
|
messages.append({"role": "assistant", "content": "你好!很高兴为你提供帮助。"})
|
|
|
|
|
|
messages.append({"role": "user", "content": "给我讲一个年轻人奋斗创业最终取得成功的故事。故事只能有一句话。"})
|
|
|
call_qwen(messages)
|
|
|
messages.append(
|
|
|
{
|
|
|
"role": "assistant",
|
|
|
"content": "故事的主人公叫李明,他来自一个普通的家庭,父母都是普通的工人。李明想要成为一名成功的企业家。……",
|
|
|
}
|
|
|
)
|
|
|
|
|
|
messages.append({"role": "user", "content": "给这个故事起一个标题"})
|
|
|
call_qwen(messages)
|
|
|
|
|
|
|
|
|
def test_2():
|
|
|
functions = [
|
|
|
{
|
|
|
"name_for_human": "谷歌搜索",
|
|
|
"name_for_model": "google_search",
|
|
|
"description_for_model": "谷歌搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。"
|
|
|
+ " Format the arguments as a JSON object.",
|
|
|
"parameters": [
|
|
|
{
|
|
|
"name": "search_query",
|
|
|
"description": "搜索关键词或短语",
|
|
|
"required": True,
|
|
|
"schema": {"type": "string"},
|
|
|
}
|
|
|
],
|
|
|
},
|
|
|
{
|
|
|
"name_for_human": "文生图",
|
|
|
"name_for_model": "image_gen",
|
|
|
"description_for_model": "文生图是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL。"
|
|
|
+ " Format the arguments as a JSON object.",
|
|
|
"parameters": [
|
|
|
{
|
|
|
"name": "prompt",
|
|
|
"description": "英文关键词,描述了希望图像具有什么内容",
|
|
|
"required": True,
|
|
|
"schema": {"type": "string"},
|
|
|
}
|
|
|
],
|
|
|
},
|
|
|
]
|
|
|
|
|
|
messages = [{"role": "user", "content": "你好"}]
|
|
|
call_qwen(messages, functions)
|
|
|
messages.append(
|
|
|
{"role": "assistant", "content": "你好!很高兴见到你。有什么我可以帮忙的吗?"},
|
|
|
)
|
|
|
|
|
|
messages.append({"role": "user", "content": "谁是周杰伦"})
|
|
|
call_qwen(messages, functions)
|
|
|
messages.append(
|
|
|
{
|
|
|
"role": "assistant",
|
|
|
"content": "Thought: 我应该使用Google搜索查找相关信息。",
|
|
|
"function_call": {
|
|
|
"name": "google_search",
|
|
|
"arguments": '{"search_query": "周杰伦"}',
|
|
|
},
|
|
|
}
|
|
|
)
|
|
|
|
|
|
messages.append(
|
|
|
{
|
|
|
"role": "function",
|
|
|
"name": "google_search",
|
|
|
"content": "Jay Chou is a Taiwanese singer.",
|
|
|
}
|
|
|
)
|
|
|
call_qwen(messages, functions)
|
|
|
messages.append(
|
|
|
{
|
|
|
"role": "assistant",
|
|
|
"content": "周杰伦(Jay Chou)是一位来自台湾的歌手。",
|
|
|
},
|
|
|
)
|
|
|
|
|
|
messages.append({"role": "user", "content": "他老婆是谁"})
|
|
|
call_qwen(messages, functions)
|
|
|
messages.append(
|
|
|
{
|
|
|
"role": "assistant",
|
|
|
"content": "Thought: 我应该使用Google搜索查找相关信息。",
|
|
|
"function_call": {
|
|
|
"name": "google_search",
|
|
|
"arguments": '{"search_query": "周杰伦 老婆"}',
|
|
|
},
|
|
|
}
|
|
|
)
|
|
|
|
|
|
messages.append(
|
|
|
{"role": "function", "name": "google_search", "content": "Hannah Quinlivan"}
|
|
|
)
|
|
|
call_qwen(messages, functions)
|
|
|
messages.append(
|
|
|
{
|
|
|
"role": "assistant",
|
|
|
"content": "周杰伦的老婆是Hannah Quinlivan。",
|
|
|
},
|
|
|
)
|
|
|
|
|
|
messages.append({"role": "user", "content": "给我画个可爱的小猫吧,最好是黑猫"})
|
|
|
call_qwen(messages, functions)
|
|
|
messages.append(
|
|
|
{
|
|
|
"role": "assistant",
|
|
|
"content": "Thought: 我应该使用文生图API来生成一张可爱的小猫图片。",
|
|
|
"function_call": {
|
|
|
"name": "image_gen",
|
|
|
"arguments": '{"prompt": "cute black cat"}',
|
|
|
},
|
|
|
}
|
|
|
)
|
|
|
|
|
|
messages.append(
|
|
|
{
|
|
|
"role": "function",
|
|
|
"name": "image_gen",
|
|
|
"content": '{"image_url": "https://image.pollinations.ai/prompt/cute%20black%20cat"}',
|
|
|
}
|
|
|
)
|
|
|
call_qwen(messages, functions)
|
|
|
|
|
|
|
|
|
def test_3():
|
|
|
functions = [
|
|
|
{
|
|
|
"name": "get_current_weather",
|
|
|
"description": "Get the current weather in a given location.",
|
|
|
"parameters": {
|
|
|
"type": "object",
|
|
|
"properties": {
|
|
|
"location": {
|
|
|
"type": "string",
|
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
|
},
|
|
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
|
|
},
|
|
|
"required": ["location"],
|
|
|
},
|
|
|
}
|
|
|
]
|
|
|
|
|
|
messages = [
|
|
|
{
|
|
|
"role": "user",
|
|
|
# Note: The current version of Qwen-7B-Chat (as of 2023.08) performs okay with Chinese tool-use prompts,
|
|
|
# but performs terribly when it comes to English tool-use prompts, due to a mistake in data collecting.
|
|
|
"content": "波士顿天气如何?",
|
|
|
}
|
|
|
]
|
|
|
call_qwen(messages, functions)
|
|
|
messages.append(
|
|
|
{
|
|
|
"role": "assistant",
|
|
|
"content": None,
|
|
|
"function_call": {
|
|
|
"name": "get_current_weather",
|
|
|
"arguments": '{"location": "Boston, MA"}',
|
|
|
},
|
|
|
},
|
|
|
)
|
|
|
|
|
|
messages.append(
|
|
|
{
|
|
|
"role": "function",
|
|
|
"name": "get_current_weather",
|
|
|
"content": '{"temperature": "22", "unit": "celsius", "description": "Sunny"}',
|
|
|
}
|
|
|
)
|
|
|
call_qwen(messages, functions)
|
|
|
|
|
|
|
|
|
def test_4():
|
|
|
from langchain.chat_models import ChatOpenAI
|
|
|
from langchain.agents import load_tools, initialize_agent, AgentType
|
|
|
|
|
|
llm = ChatOpenAI(
|
|
|
model_name="Qwen",
|
|
|
openai_api_base="http://localhost:8000/v1",
|
|
|
openai_api_key="EMPTY",
|
|
|
streaming=False,
|
|
|
)
|
|
|
tools = load_tools(
|
|
|
["arxiv"],
|
|
|
)
|
|
|
agent_chain = initialize_agent(
|
|
|
tools,
|
|
|
llm,
|
|
|
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
|
|
verbose=True,
|
|
|
)
|
|
|
# TODO: The performance is okay with Chinese prompts, but not so good when it comes to English.
|
|
|
agent_chain.run("查一下论文 1605.08386 的信息")
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
print("### Test Case 1 - No Function Calling (普通问答、无函数调用) ###")
|
|
|
test_1()
|
|
|
print("### Test Case 2 - Use Qwen-Style Functions (函数调用,千问格式) ###")
|
|
|
test_2()
|
|
|
print("### Test Case 3 - Use GPT-Style Functions (函数调用,GPT格式) ###")
|
|
|
test_3()
|
|
|
print("### Test Case 4 - Use LangChain (接入Langchain) ###")
|
|
|
test_4()
|