|
|
# Reference: https://openai.com/blog/function-calling-and-other-api-updates
|
|
|
import json
|
|
|
from pprint import pprint
|
|
|
|
|
|
import openai
|
|
|
|
|
|
# To start an OpenAI-like Qwen server, use the following commands:
|
|
|
# git clone https://github.com/QwenLM/Qwen-7B;
|
|
|
# cd Qwen-7B;
|
|
|
# pip install fastapi uvicorn openai pydantic sse_starlette;
|
|
|
# python openai_api.py;
|
|
|
#
|
|
|
# Then configure the api_base and api_key in your client:
|
|
|
openai.api_base = 'http://localhost:8000/v1'
|
|
|
openai.api_key = 'none'
|
|
|
|
|
|
|
|
|
def call_qwen(messages, functions=None):
|
|
|
print('input:')
|
|
|
pprint(messages, indent=2)
|
|
|
if functions:
|
|
|
response = openai.ChatCompletion.create(model='Qwen',
|
|
|
messages=messages,
|
|
|
functions=functions)
|
|
|
else:
|
|
|
response = openai.ChatCompletion.create(model='Qwen',
|
|
|
messages=messages)
|
|
|
response = response.choices[0]['message']
|
|
|
response = json.loads(json.dumps(response,
|
|
|
ensure_ascii=False)) # fix zh rendering
|
|
|
print('output:')
|
|
|
pprint(response, indent=2)
|
|
|
print()
|
|
|
return response
|
|
|
|
|
|
|
|
|
def test_1():
|
|
|
messages = [{'role': 'user', 'content': '你好'}]
|
|
|
call_qwen(messages)
|
|
|
messages.append({'role': 'assistant', 'content': '你好!很高兴为你提供帮助。'})
|
|
|
|
|
|
messages.append({
|
|
|
'role': 'user',
|
|
|
'content': '给我讲一个年轻人奋斗创业最终取得成功的故事。故事只能有一句话。'
|
|
|
})
|
|
|
call_qwen(messages)
|
|
|
messages.append({
|
|
|
'role':
|
|
|
'assistant',
|
|
|
'content':
|
|
|
'故事的主人公叫李明,他来自一个普通的家庭,父母都是普通的工人。李明想要成为一名成功的企业家。……',
|
|
|
})
|
|
|
|
|
|
messages.append({'role': 'user', 'content': '给这个故事起一个标题'})
|
|
|
call_qwen(messages)
|
|
|
|
|
|
|
|
|
def test_2():
|
|
|
functions = [
|
|
|
{
|
|
|
'name_for_human':
|
|
|
'谷歌搜索',
|
|
|
'name_for_model':
|
|
|
'google_search',
|
|
|
'description_for_model':
|
|
|
'谷歌搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。' +
|
|
|
' Format the arguments as a JSON object.',
|
|
|
'parameters': [{
|
|
|
'name': 'search_query',
|
|
|
'description': '搜索关键词或短语',
|
|
|
'required': True,
|
|
|
'schema': {
|
|
|
'type': 'string'
|
|
|
},
|
|
|
}],
|
|
|
},
|
|
|
{
|
|
|
'name_for_human':
|
|
|
'文生图',
|
|
|
'name_for_model':
|
|
|
'image_gen',
|
|
|
'description_for_model':
|
|
|
'文生图是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL。' +
|
|
|
' Format the arguments as a JSON object.',
|
|
|
'parameters': [{
|
|
|
'name': 'prompt',
|
|
|
'description': '英文关键词,描述了希望图像具有什么内容',
|
|
|
'required': True,
|
|
|
'schema': {
|
|
|
'type': 'string'
|
|
|
},
|
|
|
}],
|
|
|
},
|
|
|
]
|
|
|
|
|
|
messages = [{'role': 'user', 'content': '(请不要调用工具)\n\n你好'}]
|
|
|
call_qwen(messages, functions)
|
|
|
messages.append({
|
|
|
'role': 'assistant',
|
|
|
'content': '你好!很高兴见到你。有什么我可以帮忙的吗?'
|
|
|
}, )
|
|
|
|
|
|
messages.append({'role': 'user', 'content': '搜索一下谁是周杰伦'})
|
|
|
call_qwen(messages, functions)
|
|
|
messages.append({
|
|
|
'role': 'assistant',
|
|
|
'content': '我应该使用Google搜索查找相关信息。',
|
|
|
'function_call': {
|
|
|
'name': 'google_search',
|
|
|
'arguments': '{"search_query": "周杰伦"}',
|
|
|
},
|
|
|
})
|
|
|
|
|
|
messages.append({
|
|
|
'role': 'function',
|
|
|
'name': 'google_search',
|
|
|
'content': 'Jay Chou is a Taiwanese singer.',
|
|
|
})
|
|
|
call_qwen(messages, functions)
|
|
|
messages.append(
|
|
|
{
|
|
|
'role': 'assistant',
|
|
|
'content': '周杰伦(Jay Chou)是一位来自台湾的歌手。',
|
|
|
}, )
|
|
|
|
|
|
messages.append({'role': 'user', 'content': '搜索一下他老婆是谁'})
|
|
|
call_qwen(messages, functions)
|
|
|
messages.append({
|
|
|
'role': 'assistant',
|
|
|
'content': '我应该使用Google搜索查找相关信息。',
|
|
|
'function_call': {
|
|
|
'name': 'google_search',
|
|
|
'arguments': '{"search_query": "周杰伦 老婆"}',
|
|
|
},
|
|
|
})
|
|
|
|
|
|
messages.append({
|
|
|
'role': 'function',
|
|
|
'name': 'google_search',
|
|
|
'content': 'Hannah Quinlivan'
|
|
|
})
|
|
|
call_qwen(messages, functions)
|
|
|
messages.append(
|
|
|
{
|
|
|
'role': 'assistant',
|
|
|
'content': '周杰伦的老婆是Hannah Quinlivan。',
|
|
|
}, )
|
|
|
|
|
|
messages.append({'role': 'user', 'content': '用文生图工具画个可爱的小猫吧,最好是黑猫'})
|
|
|
call_qwen(messages, functions)
|
|
|
messages.append({
|
|
|
'role': 'assistant',
|
|
|
'content': '我应该使用文生图API来生成一张可爱的小猫图片。',
|
|
|
'function_call': {
|
|
|
'name': 'image_gen',
|
|
|
'arguments': '{"prompt": "cute black cat"}',
|
|
|
},
|
|
|
})
|
|
|
|
|
|
messages.append({
|
|
|
'role':
|
|
|
'function',
|
|
|
'name':
|
|
|
'image_gen',
|
|
|
'content':
|
|
|
'{"image_url": "https://image.pollinations.ai/prompt/cute%20black%20cat"}',
|
|
|
})
|
|
|
call_qwen(messages, functions)
|
|
|
|
|
|
|
|
|
def test_3():
|
|
|
functions = [{
|
|
|
'name': 'get_current_weather',
|
|
|
'description': 'Get the current weather in a given location.',
|
|
|
'parameters': {
|
|
|
'type': 'object',
|
|
|
'properties': {
|
|
|
'location': {
|
|
|
'type': 'string',
|
|
|
'description':
|
|
|
'The city and state, e.g. San Francisco, CA',
|
|
|
},
|
|
|
'unit': {
|
|
|
'type': 'string',
|
|
|
'enum': ['celsius', 'fahrenheit']
|
|
|
},
|
|
|
},
|
|
|
'required': ['location'],
|
|
|
},
|
|
|
}]
|
|
|
|
|
|
messages = [{
|
|
|
'role': 'user',
|
|
|
# Note: The current version of Qwen-7B-Chat (as of 2023.08) performs okay with Chinese tool-use prompts,
|
|
|
# but performs terribly when it comes to English tool-use prompts, due to a mistake in data collecting.
|
|
|
'content': '波士顿天气如何?',
|
|
|
}]
|
|
|
call_qwen(messages, functions)
|
|
|
messages.append(
|
|
|
{
|
|
|
'role': 'assistant',
|
|
|
'content': None,
|
|
|
'function_call': {
|
|
|
'name': 'get_current_weather',
|
|
|
'arguments': '{"location": "Boston, MA"}',
|
|
|
},
|
|
|
}, )
|
|
|
|
|
|
messages.append({
|
|
|
'role':
|
|
|
'function',
|
|
|
'name':
|
|
|
'get_current_weather',
|
|
|
'content':
|
|
|
'{"temperature": "22", "unit": "celsius", "description": "Sunny"}',
|
|
|
})
|
|
|
call_qwen(messages, functions)
|
|
|
|
|
|
|
|
|
def test_4():
|
|
|
from langchain.agents import AgentType, initialize_agent, load_tools
|
|
|
from langchain.chat_models import ChatOpenAI
|
|
|
|
|
|
llm = ChatOpenAI(
|
|
|
model_name='Qwen',
|
|
|
openai_api_base='http://localhost:8000/v1',
|
|
|
openai_api_key='EMPTY',
|
|
|
streaming=False,
|
|
|
)
|
|
|
tools = load_tools(['arxiv'], )
|
|
|
agent_chain = initialize_agent(
|
|
|
tools,
|
|
|
llm,
|
|
|
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
|
|
verbose=True,
|
|
|
)
|
|
|
# TODO: The performance is okay with Chinese prompts, but not so good when it comes to English.
|
|
|
agent_chain.run('查一下论文 1605.08386 的信息')
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
print('### Test Case 1 - No Function Calling (普通问答、无函数调用) ###')
|
|
|
test_1()
|
|
|
print('### Test Case 2 - Use Qwen-Style Functions (函数调用,千问格式) ###')
|
|
|
test_2()
|
|
|
print('### Test Case 3 - Use GPT-Style Functions (函数调用,GPT格式) ###')
|
|
|
test_3()
|
|
|
print('### Test Case 4 - Use LangChain (接入Langchain) ###')
|
|
|
test_4()
|