You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

334 lines
9.7 KiB
Python

import os
from typing import List
import pandas as pd
import numpy as np
import argparse
import torch
from tqdm import tqdm
from transformers.trainer_utils import set_seed
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
"""
wget https://people.eecs.berkeley.edu/~hendrycks/data.tar
mkdir data/mmlu
mv data.tar data/mmlu
cd data/mmlu; tar xf data.tar
cd ../../
python eval/evaluate_mmlu.py -d data/mmlu/data/
"""
def load_models_tokenizer(args):
tokenizer = AutoTokenizer.from_pretrained(
args.checkpoint_path,
pad_token='<|extra_0|>',
eos_token='<|endoftext|>',
padding_side='left',
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
args.checkpoint_path,
pad_token_id=tokenizer.pad_token_id,
device_map="auto",
trust_remote_code=True
).eval()
model.generation_config = GenerationConfig.from_pretrained(
args.checkpoint_path,
pad_token_id=tokenizer.pad_token_id,
trust_remote_code=True
)
return model, tokenizer
def format_example(line, include_answer=True):
example = "Question: " + line["question"]
for choice in choices:
example += f'\n{choice}. {line[f"{choice}"]}'
if include_answer:
example += "\nAnswer: " + line["answer"] + "\n\n"
else:
example += "\nAnswer:"
return example
def generate_few_shot_prompt(k, subject, dev_df):
def format_subject(subject):
l = subject.split("_")
s = ""
for entry in l:
s += " " + entry
return s.strip()
prompt = "The following are multiple choice questions (with answers) about {}.\n\n".format(
format_subject(subject)
)
if k == -1:
k = dev_df.shape[0]
for i in range(k):
prompt += format_example(
dev_df.iloc[i, :],
include_answer=True,
)
return prompt
def get_logits(tokenizer, model, inputs: List[str]):
input_ids = tokenizer(inputs, padding='longest')["input_ids"]
input_ids = torch.tensor(input_ids, device=model.device)
if input_ids.shape[1] > args.max_seq_len:
input_ids = input_ids[:, input_ids.shape[1] - args.max_seq_len + 1 :]
tokens = {"input_ids": input_ids}
attention_mask = input_ids.ne(tokenizer.pad_token_id)
outputs = model(input_ids, attention_mask=attention_mask)["logits"]
logits = outputs[:, -1, :]
log_probs = torch.nn.functional.softmax(logits, dim=-1)
return log_probs, {"tokens": tokens}
@torch.no_grad()
def eval_subject(
model,
tokenizer,
subject_name,
test_df,
k=5,
dev_df=None,
few_shot=False,
save_result_dir=None,
batch_size=1,
**kwargs,
):
result = []
score = []
few_shot_prompt = (
generate_few_shot_prompt(k, subject_name, dev_df) if few_shot else []
)
all_probs = {"prob_A": [], "prob_B": [], "prob_C": [], "prob_D": []}
if args.debug:
print(f"few_shot_prompt: {few_shot_prompt}")
choices_ids = torch.tensor(
tokenizer(" A")["input_ids"] + tokenizer(" B")["input_ids"] +
tokenizer(" C")["input_ids"] + tokenizer(" D")["input_ids"]
).unsqueeze(0).to(model.device)
idx_list = list(range(0, len(test_df), batch_size))
for i in tqdm(idx_list):
full_prompt_list = []
answer_list = []
for row in test_df.iloc[i:i+batch_size].to_dict(orient='records'):
question = format_example(row, include_answer=False)
full_prompt = few_shot_prompt + question
full_prompt_list.append(full_prompt)
if 'answer' in row:
answer_list.append(row['answer'])
logits, input_info = get_logits(tokenizer, model, full_prompt_list)
softval = logits.gather(1, choices_ids.expand(logits.size(0), -1)).softmax(1)
if softval.dtype in {torch.bfloat16, torch.float16}:
softval = softval.to(dtype=torch.float32)
probs = softval.detach().cpu().numpy()
for i in range(len(probs)):
for j, choice in enumerate(choices):
all_probs[f"prob_{choice}"].append(probs[i][j])
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs[i])]
if answer_list != []:
correct = 1 if pred == answer_list[i] else 0
score.append(correct)
if args.debug:
print(f'{question} pred: {pred} ref: {answer_list[i]}')
result.append(pred)
if save_result_dir:
test_df["model_output"] = result
for i, choice in enumerate(choices):
test_df[f"prob_{choice}"] = all_probs[f"prob_{choice}"]
if score:
test_df["correctness"] = score
os.makedirs(save_result_dir, exist_ok=True)
test_df.to_csv(
os.path.join(save_result_dir, f"{subject_name}_result.csv"),
encoding="utf-8",
index=False,
)
return score
def cal_mmlu(res):
acc_sum_dict = dict()
acc_norm_sum_dict = dict()
cnt_dict = dict()
acc_sum = 0.0
cnt = 0
hard_cnt = 0
hard_acc_sum = 0.0
for class_ in TASK_NAME_MAPPING.keys():
acc_sum_dict[class_] = 0.0
acc_norm_sum_dict[class_] = 0.0
cnt_dict[class_] = 0.0
for tt in TASK_NAME_MAPPING[class_]:
acc_sum += sum(res[tt])
cnt += len(res[tt])
acc_sum_dict[class_] += sum(res[tt])
cnt_dict[class_] += len(res[tt])
print("\n\n\n", "total cnt:", cnt, "\n")
for k in TASK_NAME_MAPPING.keys():
if k in cnt_dict:
print("%s ACC: %.2f " % (k, acc_sum_dict[k] / cnt_dict[k] * 100))
print("AVERAGE ACC:%.2f " % (acc_sum / cnt * 100))
def main(args):
model, tokenizer = load_models_tokenizer(args)
dev_result = {}
for subject_name in tqdm(SUBJECTS):
# val_file_path = os.path.join(args.eval_data_path, 'val', f'{subject_name}_val.csv')
dev_file_path = os.path.join(
args.eval_data_path, "dev", f"{subject_name}_dev.csv"
)
test_file_path = os.path.join(
args.eval_data_path, "test", f"{subject_name}_test.csv"
)
# val_df = pd.read_csv(val_file_path, names=['question','A','B','C','D','answer'])
dev_df = pd.read_csv(
dev_file_path, names=["question", "A", "B", "C", "D", "answer"]
)
test_df = pd.read_csv(
test_file_path, names=["question", "A", "B", "C", "D", "answer"]
)
score = eval_subject(
model,
tokenizer,
subject_name,
test_df,
dev_df=dev_df,
k=5,
few_shot=True,
save_result_dir=f"outs/mmlu_eval_result",
batch_size=args.batch_size
)
dev_result[subject_name] = score
cal_mmlu(dev_result)
TASK_NAME_MAPPING = {
"stem": [
"abstract_algebra",
"anatomy",
"astronomy",
"college_biology",
"college_chemistry",
"college_computer_science",
"college_mathematics",
"college_physics",
"computer_security",
"conceptual_physics",
"electrical_engineering",
"elementary_mathematics",
"high_school_biology",
"high_school_chemistry",
"high_school_computer_science",
"high_school_mathematics",
"high_school_physics",
"high_school_statistics",
"machine_learning",
],
"Humanities": [
"formal_logic",
"high_school_european_history",
"high_school_us_history",
"high_school_world_history",
"international_law",
"jurisprudence",
"logical_fallacies",
"moral_disputes",
"moral_scenarios",
"philosophy",
"prehistory",
"professional_law",
"world_religions",
],
"other": [
"business_ethics",
"college_medicine",
"human_aging",
"management",
"marketing",
"medical_genetics",
"miscellaneous",
"nutrition",
"professional_accounting",
"professional_medicine",
"virology",
"global_facts",
"clinical_knowledge",
],
"social": [
"econometrics",
"high_school_geography",
"high_school_government_and_politics",
"high_school_macroeconomics",
"high_school_microeconomics",
"high_school_psychology",
"human_sexuality",
"professional_psychology",
"public_relations",
"security_studies",
"sociology",
"us_foreign_policy",
],
}
SUBJECTS = [v for vl in TASK_NAME_MAPPING.values() for v in vl]
choices = ["A", "B", "C", "D"]
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Test HF checkpoint.")
parser.add_argument(
"-c",
"--checkpoint-path",
type=str,
help="Checkpoint path",
default="Qwen/Qwen-7B",
)
parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed")
parser.add_argument("--gpu", type=int, default=0, help="gpu id")
"""Provide extra arguments required for tasks."""
group = parser.add_argument_group(title="Evaluation options")
group.add_argument("-d", "--eval_data_path", type=str, help="Path to eval data")
group.add_argument(
"--max-seq-len",
type=int,
default=2048,
help="Size of the output generated text.",
)
group.add_argument(
"--debug", action="store_true", default=False, help="Print infos."
)
group.add_argument(
"--batch-size",
type=int,
default=1,
help="batch size",
)
args = parser.parse_args()
set_seed(args.seed)
main(args)