You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

461 lines
15 KiB
Python

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import os
import argparse
import re
import torch
import pandas as pd
from thefuzz import process
from tqdm import tqdm
from transformers.trainer_utils import set_seed
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
'''
wget https://huggingface.co/datasets/ceval/ceval-exam/resolve/main/ceval-exam.zip
mkdir data/ceval
mv ceval-exam.zip data/ceval
cd data/ceval; unzip ceval-exam.zip
cd ../../
pip install thefuzz
python eval/evaluate_chat_ceval.py -d data/ceval
'''
def load_models_tokenizer(args):
tokenizer = AutoTokenizer.from_pretrained(
args.checkpoint_path, trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
args.checkpoint_path, device_map="auto", trust_remote_code=True
).eval()
model.generation_config = GenerationConfig.from_pretrained(
args.checkpoint_path, trust_remote_code=True
)
model.generation_config.do_sample = False # use greedy decoding
model.generation_config.repetition_penalty = 1.0 # disable repetition penalty
return model, tokenizer
def process_before_extraction(gen, question, choice_dict):
# Example Prompt:
# 关于传输层的面向连接服务的特性是____。
# A. 既不保证可靠,也不保证按序交付
# B. 不保证可靠,但保证按序交付
# C. 保证可靠,但不保证按序交付
# D. 既保证可靠,也保证按序交付
# Example Model Output
# 关于传输层的面向连接服务的特性是既保证可靠,也保证按序交付
# Processed Output:
# 答案是D
question_split = question.rstrip("").split("")[-1].split("_")
# replacing the question
if len(question_split[0].strip()) > 4:
gen = gen.replace(question_split[0], "答案是")
if len(question_split[-1].strip()) > 4:
gen = gen.replace(question_split[-1], "")
# replace the choice by letter in the generated sentence
# from longest one to shortest one
for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True):
gen = gen.replace(val.rstrip(""), key)
return gen
def count_substr(gen, pattern):
return len(re.findall(pattern, gen))
def extract_choice(gen, prompt, choice_list):
# 答案是A | 选项是A | 应该选A选项
res = re.search(
r"(?:(?:选|选择|选定)[:]?\s*|(?:(?:答案|选项)(?![^ABCD]{0,10}?(?:不|非)[^ABCD]{0,10}?(?:是|选|为||:|】))[^ABCD]{0,10}?(?:是|选|为||:|】))[^ABCD]{0,10}?)(A|B|C|D)(?:选项)?(?:\)|。|\.||,||、|A|B|C|D|$||:|\)|)",
gen,
)
# A选项正确 | A选项符合题意
if res is None:
res = re.search(
r"(A|B|C|D)(?:选?项)?(?![^ABCD]{0,4}?(?:不|非)[^ABCD]{0,4}?(?:正确|对[的,。:]|符合))[^ABCD]{0,4}?(?:正确|对[的,。:]|符合)",
gen,
)
# 直接输出 A
if res is None:
res = re.search(r"^[\(]?(A|B|C|D)(?:。|\)||\.||,|||:|$)", gen)
# 获取第一个出现的字母
if res is None:
res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen)
if res is None:
return choices[choice_list.index(process.extractOne(gen, choice_list)[0])]
return res.group(1)
def format_example(line):
example = line["question"] + "\n\n"
for choice in choices:
example += f'{choice}. {line[f"{choice}"]}\n'
return example
def extract_answer(response, row):
prompt = row["question"]
gen = process_before_extraction(
response, prompt, {choice: row[choice] for choice in choices}
)
if not isinstance(prompt, str):
prompt = prompt[0]
pred = extract_choice(gen, prompt, [row[choice] for choice in choices])
return pred
@torch.no_grad()
def eval_subject(
model,
tokenizer,
subject_name,
test_df,
save_result_dir=None,
overwrite=False,
**kwargs
):
result_path = os.path.join(save_result_dir, f"{subject_name}_result.csv")
if not overwrite and os.path.exists(result_path):
print(f"{result_path} existed, skip!")
score = []
for (_, datarow), (_, resultrow) in zip(
test_df.iterrows(), pd.read_csv(result_path).iterrows()
):
pred = extract_answer(resultrow["model_response"], datarow)
correct = 1 if pred == datarow["answer"] else 0
score.append(correct)
correct_ratio = 100 * sum(score) / len(score)
return correct_ratio
responses = []
result = []
score = []
for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
question = format_example(row)
response, _ = model.chat(
tokenizer,
question,
history=None,
)
print(question)
print(response)
pred = extract_answer(response, row)
print(pred)
print("======================")
if "answer" in row:
correct = 1 if pred == row["answer"] else 0
score.append(correct)
if args.debug:
print(f'{question} pred: {pred} ref: {row["answer"]}')
responses.append(response)
result.append(pred)
if score:
correct_ratio = 100 * sum(score) / len(score)
if args.debug:
print(subject_name, correct_ratio)
else:
correct_ratio = 0
if save_result_dir:
test_df["model_response"] = responses
test_df["model_output"] = result
if score:
test_df["correctness"] = score
os.makedirs(save_result_dir, exist_ok=True)
test_df.to_csv(result_path, encoding="utf-8", index=False)
return correct_ratio
def cal_ceval(res):
acc_sum_dict = dict()
acc_norm_sum_dict = dict()
cnt_dict = dict()
acc_sum = 0.0
cnt = 0
hard_cnt = 0
hard_acc_sum = 0.0
for tt in res.keys():
name = tt.split("-")[-1]
acc_sum += float(res[tt])
cnt += 1
class_ = TASK_NAME_MAPPING[name][2]
if class_ not in acc_sum_dict:
acc_sum_dict[class_] = 0.0
acc_norm_sum_dict[class_] = 0.0
cnt_dict[class_] = 0.0
if name in hard_list:
hard_cnt += 1
hard_acc_sum += float(res[tt])
acc_sum_dict[class_] += float(res[tt])
cnt_dict[class_] += 1
print("\n\n\n")
for k in ["STEM", "Social Science", "Humanities", "Other"]:
if k in cnt_dict:
print("%s acc: %.2f " % (k, acc_sum_dict[k] / cnt_dict[k]))
if hard_cnt > 0:
print("Hard acc:%.2f " % (hard_acc_sum / hard_cnt))
print("AVERAGE acc:%.2f " % (acc_sum / cnt))
TASK_NAME_MAPPING = {
"computer_network": ["Computer Network", "\u8ba1\u7b97\u673a\u7f51\u7edc", "STEM"],
"operating_system": ["Operating System", "\u64cd\u4f5c\u7cfb\u7edf", "STEM"],
"computer_architecture": [
"Computer Architecture",
"\u8ba1\u7b97\u673a\u7ec4\u6210",
"STEM",
],
"college_programming": ["College Programming", "\u5927\u5b66\u7f16\u7a0b", "STEM"],
"college_physics": ["College Physics", "\u5927\u5b66\u7269\u7406", "STEM"],
"college_chemistry": ["College Chemistry", "\u5927\u5b66\u5316\u5b66", "STEM"],
"advanced_mathematics": [
"Advanced Mathematics",
"\u9ad8\u7b49\u6570\u5b66",
"STEM",
],
"probability_and_statistics": [
"Probability and Statistics",
"\u6982\u7387\u7edf\u8ba1",
"STEM",
],
"discrete_mathematics": [
"Discrete Mathematics",
"\u79bb\u6563\u6570\u5b66",
"STEM",
],
"electrical_engineer": [
"Electrical Engineer",
"\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08",
"STEM",
],
"metrology_engineer": [
"Metrology Engineer",
"\u6ce8\u518c\u8ba1\u91cf\u5e08",
"STEM",
],
"high_school_mathematics": [
"High School Mathematics",
"\u9ad8\u4e2d\u6570\u5b66",
"STEM",
],
"high_school_physics": ["High School Physics", "\u9ad8\u4e2d\u7269\u7406", "STEM"],
"high_school_chemistry": [
"High School Chemistry",
"\u9ad8\u4e2d\u5316\u5b66",
"STEM",
],
"high_school_biology": ["High School Biology", "\u9ad8\u4e2d\u751f\u7269", "STEM"],
"middle_school_mathematics": [
"Middle School Mathematics",
"\u521d\u4e2d\u6570\u5b66",
"STEM",
],
"middle_school_biology": [
"Middle School Biology",
"\u521d\u4e2d\u751f\u7269",
"STEM",
],
"middle_school_physics": [
"Middle School Physics",
"\u521d\u4e2d\u7269\u7406",
"STEM",
],
"middle_school_chemistry": [
"Middle School Chemistry",
"\u521d\u4e2d\u5316\u5b66",
"STEM",
],
"veterinary_medicine": ["Veterinary Medicine", "\u517d\u533b\u5b66", "STEM"],
"college_economics": [
"College Economics",
"\u5927\u5b66\u7ecf\u6d4e\u5b66",
"Social Science",
],
"business_administration": [
"Business Administration",
"\u5de5\u5546\u7ba1\u7406",
"Social Science",
],
"marxism": [
"Marxism",
"\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406",
"Social Science",
],
"mao_zedong_thought": [
"Mao Zedong Thought",
"\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba",
"Social Science",
],
"education_science": ["Education Science", "\u6559\u80b2\u5b66", "Social Science"],
"teacher_qualification": [
"Teacher Qualification",
"\u6559\u5e08\u8d44\u683c",
"Social Science",
],
"high_school_politics": [
"High School Politics",
"\u9ad8\u4e2d\u653f\u6cbb",
"Social Science",
],
"high_school_geography": [
"High School Geography",
"\u9ad8\u4e2d\u5730\u7406",
"Social Science",
],
"middle_school_politics": [
"Middle School Politics",
"\u521d\u4e2d\u653f\u6cbb",
"Social Science",
],
"middle_school_geography": [
"Middle School Geography",
"\u521d\u4e2d\u5730\u7406",
"Social Science",
],
"modern_chinese_history": [
"Modern Chinese History",
"\u8fd1\u4ee3\u53f2\u7eb2\u8981",
"Humanities",
],
"ideological_and_moral_cultivation": [
"Ideological and Moral Cultivation",
"\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840",
"Humanities",
],
"logic": ["Logic", "\u903b\u8f91\u5b66", "Humanities"],
"law": ["Law", "\u6cd5\u5b66", "Humanities"],
"chinese_language_and_literature": [
"Chinese Language and Literature",
"\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66",
"Humanities",
],
"art_studies": ["Art Studies", "\u827a\u672f\u5b66", "Humanities"],
"professional_tour_guide": [
"Professional Tour Guide",
"\u5bfc\u6e38\u8d44\u683c",
"Humanities",
],
"legal_professional": [
"Legal Professional",
"\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c",
"Humanities",
],
"high_school_chinese": [
"High School Chinese",
"\u9ad8\u4e2d\u8bed\u6587",
"Humanities",
],
"high_school_history": [
"High School History",
"\u9ad8\u4e2d\u5386\u53f2",
"Humanities",
],
"middle_school_history": [
"Middle School History",
"\u521d\u4e2d\u5386\u53f2",
"Humanities",
],
"civil_servant": ["Civil Servant", "\u516c\u52a1\u5458", "Other"],
"sports_science": ["Sports Science", "\u4f53\u80b2\u5b66", "Other"],
"plant_protection": ["Plant Protection", "\u690d\u7269\u4fdd\u62a4", "Other"],
"basic_medicine": ["Basic Medicine", "\u57fa\u7840\u533b\u5b66", "Other"],
"clinical_medicine": ["Clinical Medicine", "\u4e34\u5e8a\u533b\u5b66", "Other"],
"urban_and_rural_planner": [
"Urban and Rural Planner",
"\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08",
"Other",
],
"accountant": ["Accountant", "\u6ce8\u518c\u4f1a\u8ba1\u5e08", "Other"],
"fire_engineer": [
"Fire Engineer",
"\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08",
"Other",
],
"environmental_impact_assessment_engineer": [
"Environmental Impact Assessment Engineer",
"\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08",
"Other",
],
"tax_accountant": ["Tax Accountant", "\u7a0e\u52a1\u5e08", "Other"],
"physician": ["Physician", "\u533b\u5e08\u8d44\u683c", "Other"],
}
hard_list = [
"advanced_mathematics",
"discrete_mathematics",
"probability_and_statistics",
"college_physics",
"college_chemistry",
"high_school_mathematics",
"high_school_physics",
"high_school_chemistry",
]
choices = ["A", "B", "C", "D"]
def main(args):
print("loading model weights")
if args.checkpoint_path:
model, tokenizer = load_models_tokenizer(args)
else:
model, tokenizer = None, None
print("model loaded")
dev_result = {}
for subject_name in tqdm(TASK_NAME_MAPPING.keys()):
val_file_path = os.path.join(
args.eval_data_path, "val", f"{subject_name}_val.csv"
)
val_df = pd.read_csv(val_file_path)
score = eval_subject(
model,
tokenizer,
subject_name,
val_df,
save_result_dir="outs_chat/ceval_eval_result",
overwrite=args.overwrite,
)
dev_result[subject_name] = score
cal_ceval(dev_result)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Test HF checkpoint.")
parser.add_argument(
"-c",
"--checkpoint-path",
type=str,
help="Checkpoint path",
default="Qwen/Qwen-7B-Chat",
)
parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed")
# Provide extra arguments required for tasks
group = parser.add_argument_group(title="Evaluation options")
group.add_argument(
"-d", "--eval_data_path", type=str, required=True, help="Path to eval data"
)
group.add_argument(
"--debug", action="store_true", default=False, help="Print infos."
)
group.add_argument(
"--overwrite",
action="store_true",
default=False,
help="Overwrite existed results",
)
args = parser.parse_args()
set_seed(args.seed)
main(args)