You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
218 lines
8.3 KiB
Python
218 lines
8.3 KiB
Python
import os
|
|
import pandas as pd
|
|
import numpy as np
|
|
import argparse
|
|
import datasets
|
|
import torch
|
|
|
|
from typing import List
|
|
from tqdm import tqdm
|
|
from transformers.trainer_utils import set_seed
|
|
|
|
|
|
'''
|
|
wget https://people.eecs.berkeley.edu/~hendrycks/data.tar
|
|
mkdir data/mmlu
|
|
mv data.tar data/mmlu
|
|
cd data/mmlu; tar xf data.tar
|
|
cd ../../
|
|
python eval/evaluate_mmlu.py -d data/mmlu/data/
|
|
'''
|
|
|
|
|
|
def load_models_tokenizer(args):
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
from transformers.generation import GenerationConfig
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True)
|
|
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True).eval()
|
|
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True)
|
|
return model, tokenizer
|
|
|
|
|
|
def format_example(line, include_answer=True):
|
|
example = 'Question: ' + line['question']
|
|
for choice in choices:
|
|
example += f'\n{choice}. {line[f"{choice}"]}'
|
|
|
|
if include_answer:
|
|
example += '\nAnswer: ' + line["answer"] + '\n\n'
|
|
else:
|
|
example += '\nAnswer:'
|
|
return example
|
|
|
|
|
|
def generate_few_shot_prompt(k, subject, dev_df):
|
|
|
|
def format_subject(subject):
|
|
l = subject.split("_")
|
|
s = ""
|
|
for entry in l:
|
|
s += " " + entry
|
|
return s.strip()
|
|
|
|
prompt = "The following are multiple choice questions (with answers) about {}.\n\n".format(format_subject(subject))
|
|
|
|
if k == -1:
|
|
k = dev_df.shape[0]
|
|
for i in range(k):
|
|
prompt += format_example(
|
|
dev_df.iloc[i, :],
|
|
include_answer=True,
|
|
)
|
|
return prompt
|
|
|
|
|
|
def get_logits(tokenizer, model, inputs: List[str]):
|
|
input_ids = tokenizer(inputs, padding=False)['input_ids']
|
|
input_ids = torch.tensor(input_ids, device=model.device)
|
|
|
|
if input_ids.shape[1] > args.max_seq_len:
|
|
input_ids = input_ids[:, input_ids.shape[1]-args.max_seq_len+1:]
|
|
tokens = {'input_ids': input_ids}
|
|
|
|
outputs = model(input_ids)['logits']
|
|
logits = outputs[:, -1, :]
|
|
log_probs = torch.nn.functional.softmax(logits, dim=-1)
|
|
return log_probs, {'tokens': tokens}
|
|
|
|
|
|
@torch.no_grad()
|
|
def eval_subject(
|
|
model,
|
|
tokenizer,
|
|
subject_name,
|
|
test_df,
|
|
k=5,
|
|
dev_df=None,
|
|
few_shot=False,
|
|
save_result_dir=None,
|
|
**kwargs
|
|
):
|
|
result = []
|
|
score = []
|
|
|
|
few_shot_prompt = generate_few_shot_prompt(
|
|
k, subject_name, dev_df) if few_shot else []
|
|
all_probs = {'prob_A': [], 'prob_B': [], 'prob_C': [], 'prob_D': []}
|
|
if args.debug: print(f"few_shot_prompt: {few_shot_prompt}")
|
|
|
|
for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
|
|
question = format_example(row, include_answer=False)
|
|
full_prompt = few_shot_prompt + question
|
|
|
|
output, input_info = get_logits(tokenizer, model, [full_prompt])
|
|
assert output.shape[0] == 1
|
|
logits = output.flatten()
|
|
|
|
softval = torch.nn.functional.softmax(
|
|
torch.tensor(
|
|
[
|
|
logits[tokenizer(" A")['input_ids']],
|
|
logits[tokenizer(" B")['input_ids']],
|
|
logits[tokenizer(" C")['input_ids']],
|
|
logits[tokenizer(" D")['input_ids']],
|
|
]
|
|
),
|
|
dim=0,
|
|
)
|
|
if softval.dtype in {torch.bfloat16, torch.float16}:
|
|
softval = softval.to(dtype=torch.float32)
|
|
probs = softval.detach().cpu().numpy()
|
|
|
|
for i, choice in enumerate(choices):
|
|
all_probs[f'prob_{choice}'].append(probs[i])
|
|
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs)]
|
|
|
|
if 'answer' in row:
|
|
correct = 1 if pred == row['answer'] else 0
|
|
score.append(correct)
|
|
if args.debug: print(f'{question} pred: {pred} ref: {row["answer"]}')
|
|
result.append(pred)
|
|
|
|
if save_result_dir:
|
|
test_df['model_output'] = result
|
|
for i, choice in enumerate(choices):
|
|
test_df[f'prob_{choice}'] = (all_probs[f'prob_{choice}'])
|
|
if score:
|
|
test_df["correctness"] = score
|
|
os.makedirs(save_result_dir, exist_ok=True)
|
|
test_df.to_csv(os.path.join(
|
|
save_result_dir, f'{subject_name}_result.csv'), encoding="utf-8", index=False)
|
|
|
|
return score
|
|
|
|
|
|
def cal_mmlu(res):
|
|
acc_sum_dict = dict()
|
|
acc_norm_sum_dict = dict()
|
|
cnt_dict = dict()
|
|
acc_sum = 0.
|
|
cnt = 0
|
|
hard_cnt = 0
|
|
hard_acc_sum = 0.
|
|
|
|
for class_ in TASK_NAME_MAPPING.keys():
|
|
acc_sum_dict[class_] = 0.
|
|
acc_norm_sum_dict[class_] = 0.
|
|
cnt_dict[class_] = 0.
|
|
|
|
for tt in TASK_NAME_MAPPING[class_]:
|
|
acc_sum += sum(res[tt])
|
|
cnt += len(res[tt])
|
|
|
|
acc_sum_dict[class_] += sum(res[tt])
|
|
cnt_dict[class_] += len(res[tt])
|
|
|
|
print('\n\n\n', 'total cnt:', cnt, '\n')
|
|
for k in TASK_NAME_MAPPING.keys():
|
|
if k in cnt_dict:
|
|
print('%s ACC: %.2f ' % (
|
|
k, acc_sum_dict[k] / cnt_dict[k] * 100))
|
|
print('AVERAGE ACC:%.2f ' % (acc_sum / cnt * 100))
|
|
|
|
|
|
def main(args):
|
|
model, tokenizer = load_models_tokenizer(args)
|
|
|
|
dev_result = {}
|
|
for subject_name in tqdm(SUBJECTS):
|
|
# val_file_path = os.path.join(args.eval_data_path, 'val', f'{subject_name}_val.csv')
|
|
dev_file_path = os.path.join(args.eval_data_path, 'dev', f'{subject_name}_dev.csv')
|
|
test_file_path = os.path.join(args.eval_data_path, 'test', f'{subject_name}_test.csv')
|
|
# val_df = pd.read_csv(val_file_path, names=['question','A','B','C','D','answer'])
|
|
dev_df = pd.read_csv(dev_file_path, names=['question','A','B','C','D','answer'])
|
|
test_df = pd.read_csv(test_file_path, names=['question','A','B','C','D','answer'])
|
|
|
|
score = eval_subject(model, tokenizer, subject_name, test_df, dev_df=dev_df, k=5, few_shot=True,
|
|
save_result_dir=f"outs/mmlu_eval_result")
|
|
dev_result[subject_name] = score
|
|
cal_mmlu(dev_result)
|
|
|
|
|
|
TASK_NAME_MAPPING = {'stem': ['abstract_algebra', 'anatomy', 'astronomy', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_physics', 'computer_security', 'conceptual_physics', 'electrical_engineering', 'elementary_mathematics', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_mathematics', 'high_school_physics', 'high_school_statistics', 'machine_learning'],
|
|
'Humanities': ['formal_logic', 'high_school_european_history', 'high_school_us_history', 'high_school_world_history', 'international_law', 'jurisprudence', 'logical_fallacies', 'moral_disputes', 'moral_scenarios', 'philosophy', 'prehistory', 'professional_law', 'world_religions'],
|
|
'other': ['business_ethics', 'college_medicine', 'human_aging', 'management', 'marketing', 'medical_genetics', 'miscellaneous', 'nutrition', 'professional_accounting', 'professional_medicine', 'virology', 'global_facts', 'clinical_knowledge'],
|
|
'social': ['econometrics', 'high_school_geography', 'high_school_government_and_politics', 'high_school_macroeconomics', 'high_school_microeconomics', 'high_school_psychology', 'human_sexuality', 'professional_psychology', 'public_relations', 'security_studies', 'sociology', 'us_foreign_policy']}
|
|
SUBJECTS = [v for vl in TASK_NAME_MAPPING.values() for v in vl]
|
|
choices = ["A", "B", "C", "D"]
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Test HF checkpoint.')
|
|
parser.add_argument('-c', '--checkpoint-path', type=str, help='Checkpoint path', default="Qwen/Qwen-7B")
|
|
parser.add_argument('-s', '--seed', type=int, default=1234, help='Random seed')
|
|
parser.add_argument('--gpu', type=int, default=0, help='gpu id')
|
|
|
|
"""Provide extra arguments required for tasks."""
|
|
group = parser.add_argument_group(title='Evaluation options')
|
|
group.add_argument('-d', '--eval_data_path', type=str,
|
|
help='Path to eval data')
|
|
group.add_argument("--max-seq-len", type=int, default=2048,
|
|
help='Size of the output generated text.')
|
|
group.add_argument("--debug", action='store_true', default=False,
|
|
help='Print infos.')
|
|
|
|
args = parser.parse_args()
|
|
set_seed(args.seed)
|
|
|
|
main(args) |