You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Isekai-Qwen/finetune/finetune_lora_single_gpu.sh

67 lines
1.6 KiB
Bash

#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
MODEL="Qwen/Qwen-7B" # Set the path if you do not want to load from huggingface directly
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
# See the section for finetuning in README for more information.
DATA="../dataset/kurita.json"
function usage() {
echo '
Usage: bash finetune/finetune_lora_single_gpu.sh [-m MODEL_PATH] [-d DATA_PATH]
'
}
while [[ "$1" != "" ]]; do
case $1 in
-m | --model )
shift
MODEL=$1
;;
-d | --data )
shift
DATA=$1
;;
-h | --help )
usage
exit 0
;;
* )
echo "Unknown argument ${1}"
exit 1
;;
esac
shift
done
export CUDA_VISIBLE_DEVICES=0
python finetune.py \
--model_name_or_path $MODEL \
--data_path $DATA \
--output_dir output_qwen \
--num_train_epochs 16 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 10 \
--learning_rate 3e-4 \
--weight_decay 0.1 \
--adam_beta2 0.95 \
--warmup_ratio 0.01 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--report_to "none" \
--model_max_length 3072 \
--lazy_preprocess True \
--gradient_checkpointing \
--use_lora \
--fp16 True \
--deepspeed finetune/ds_config_zero2.json
# If you use fp16 instead of bf16, you should use deepspeed
# --fp16 True --deepspeed finetune/ds_config_zero2.json