You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
334 lines
9.7 KiB
Python
334 lines
9.7 KiB
Python
import os
|
|
from typing import List
|
|
import pandas as pd
|
|
import numpy as np
|
|
import argparse
|
|
import torch
|
|
from tqdm import tqdm
|
|
from transformers.trainer_utils import set_seed
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
from transformers.generation import GenerationConfig
|
|
|
|
"""
|
|
wget https://people.eecs.berkeley.edu/~hendrycks/data.tar
|
|
mkdir data/mmlu
|
|
mv data.tar data/mmlu
|
|
cd data/mmlu; tar xf data.tar
|
|
cd ../../
|
|
python eval/evaluate_mmlu.py -d data/mmlu/data/
|
|
"""
|
|
|
|
|
|
def load_models_tokenizer(args):
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
args.checkpoint_path,
|
|
pad_token='<|extra_0|>',
|
|
eos_token='<|endoftext|>',
|
|
padding_side='left',
|
|
trust_remote_code=True
|
|
)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
args.checkpoint_path,
|
|
pad_token_id=tokenizer.pad_token_id,
|
|
device_map="auto",
|
|
trust_remote_code=True
|
|
).eval()
|
|
model.generation_config = GenerationConfig.from_pretrained(
|
|
args.checkpoint_path,
|
|
pad_token_id=tokenizer.pad_token_id,
|
|
trust_remote_code=True
|
|
)
|
|
return model, tokenizer
|
|
|
|
|
|
def format_example(line, include_answer=True):
|
|
example = "Question: " + line["question"]
|
|
for choice in choices:
|
|
example += f'\n{choice}. {line[f"{choice}"]}'
|
|
|
|
if include_answer:
|
|
example += "\nAnswer: " + line["answer"] + "\n\n"
|
|
else:
|
|
example += "\nAnswer:"
|
|
return example
|
|
|
|
|
|
def generate_few_shot_prompt(k, subject, dev_df):
|
|
def format_subject(subject):
|
|
l = subject.split("_")
|
|
s = ""
|
|
for entry in l:
|
|
s += " " + entry
|
|
return s.strip()
|
|
|
|
prompt = "The following are multiple choice questions (with answers) about {}.\n\n".format(
|
|
format_subject(subject)
|
|
)
|
|
|
|
if k == -1:
|
|
k = dev_df.shape[0]
|
|
for i in range(k):
|
|
prompt += format_example(
|
|
dev_df.iloc[i, :],
|
|
include_answer=True,
|
|
)
|
|
return prompt
|
|
|
|
|
|
def get_logits(tokenizer, model, inputs: List[str]):
|
|
input_ids = tokenizer(inputs, padding='longest')["input_ids"]
|
|
input_ids = torch.tensor(input_ids, device=model.device)
|
|
|
|
if input_ids.shape[1] > args.max_seq_len:
|
|
input_ids = input_ids[:, input_ids.shape[1] - args.max_seq_len + 1 :]
|
|
tokens = {"input_ids": input_ids}
|
|
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
|
|
|
outputs = model(input_ids, attention_mask=attention_mask)["logits"]
|
|
logits = outputs[:, -1, :]
|
|
log_probs = torch.nn.functional.softmax(logits, dim=-1)
|
|
return log_probs, {"tokens": tokens}
|
|
|
|
|
|
@torch.no_grad()
|
|
def eval_subject(
|
|
model,
|
|
tokenizer,
|
|
subject_name,
|
|
test_df,
|
|
k=5,
|
|
dev_df=None,
|
|
few_shot=False,
|
|
save_result_dir=None,
|
|
batch_size=1,
|
|
**kwargs,
|
|
):
|
|
result = []
|
|
score = []
|
|
|
|
few_shot_prompt = (
|
|
generate_few_shot_prompt(k, subject_name, dev_df) if few_shot else []
|
|
)
|
|
all_probs = {"prob_A": [], "prob_B": [], "prob_C": [], "prob_D": []}
|
|
if args.debug:
|
|
print(f"few_shot_prompt: {few_shot_prompt}")
|
|
|
|
choices_ids = torch.tensor(
|
|
tokenizer(" A")["input_ids"] + tokenizer(" B")["input_ids"] +
|
|
tokenizer(" C")["input_ids"] + tokenizer(" D")["input_ids"]
|
|
).unsqueeze(0).to(model.device)
|
|
|
|
idx_list = list(range(0, len(test_df), batch_size))
|
|
for i in tqdm(idx_list):
|
|
full_prompt_list = []
|
|
answer_list = []
|
|
for row in test_df.iloc[i:i+batch_size].to_dict(orient='records'):
|
|
question = format_example(row, include_answer=False)
|
|
full_prompt = few_shot_prompt + question
|
|
full_prompt_list.append(full_prompt)
|
|
if 'answer' in row:
|
|
answer_list.append(row['answer'])
|
|
|
|
logits, input_info = get_logits(tokenizer, model, full_prompt_list)
|
|
softval = logits.gather(1, choices_ids.expand(logits.size(0), -1)).softmax(1)
|
|
if softval.dtype in {torch.bfloat16, torch.float16}:
|
|
softval = softval.to(dtype=torch.float32)
|
|
probs = softval.detach().cpu().numpy()
|
|
|
|
for i in range(len(probs)):
|
|
for j, choice in enumerate(choices):
|
|
all_probs[f"prob_{choice}"].append(probs[i][j])
|
|
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs[i])]
|
|
|
|
if answer_list != []:
|
|
correct = 1 if pred == answer_list[i] else 0
|
|
score.append(correct)
|
|
if args.debug:
|
|
print(f'{question} pred: {pred} ref: {answer_list[i]}')
|
|
result.append(pred)
|
|
|
|
if save_result_dir:
|
|
test_df["model_output"] = result
|
|
for i, choice in enumerate(choices):
|
|
test_df[f"prob_{choice}"] = all_probs[f"prob_{choice}"]
|
|
if score:
|
|
test_df["correctness"] = score
|
|
os.makedirs(save_result_dir, exist_ok=True)
|
|
test_df.to_csv(
|
|
os.path.join(save_result_dir, f"{subject_name}_result.csv"),
|
|
encoding="utf-8",
|
|
index=False,
|
|
)
|
|
|
|
return score
|
|
|
|
|
|
def cal_mmlu(res):
|
|
acc_sum_dict = dict()
|
|
acc_norm_sum_dict = dict()
|
|
cnt_dict = dict()
|
|
acc_sum = 0.0
|
|
cnt = 0
|
|
hard_cnt = 0
|
|
hard_acc_sum = 0.0
|
|
|
|
for class_ in TASK_NAME_MAPPING.keys():
|
|
acc_sum_dict[class_] = 0.0
|
|
acc_norm_sum_dict[class_] = 0.0
|
|
cnt_dict[class_] = 0.0
|
|
|
|
for tt in TASK_NAME_MAPPING[class_]:
|
|
acc_sum += sum(res[tt])
|
|
cnt += len(res[tt])
|
|
|
|
acc_sum_dict[class_] += sum(res[tt])
|
|
cnt_dict[class_] += len(res[tt])
|
|
|
|
print("\n\n\n", "total cnt:", cnt, "\n")
|
|
for k in TASK_NAME_MAPPING.keys():
|
|
if k in cnt_dict:
|
|
print("%s ACC: %.2f " % (k, acc_sum_dict[k] / cnt_dict[k] * 100))
|
|
print("AVERAGE ACC:%.2f " % (acc_sum / cnt * 100))
|
|
|
|
|
|
def main(args):
|
|
model, tokenizer = load_models_tokenizer(args)
|
|
|
|
dev_result = {}
|
|
for subject_name in tqdm(SUBJECTS):
|
|
# val_file_path = os.path.join(args.eval_data_path, 'val', f'{subject_name}_val.csv')
|
|
dev_file_path = os.path.join(
|
|
args.eval_data_path, "dev", f"{subject_name}_dev.csv"
|
|
)
|
|
test_file_path = os.path.join(
|
|
args.eval_data_path, "test", f"{subject_name}_test.csv"
|
|
)
|
|
# val_df = pd.read_csv(val_file_path, names=['question','A','B','C','D','answer'])
|
|
dev_df = pd.read_csv(
|
|
dev_file_path, names=["question", "A", "B", "C", "D", "answer"]
|
|
)
|
|
test_df = pd.read_csv(
|
|
test_file_path, names=["question", "A", "B", "C", "D", "answer"]
|
|
)
|
|
|
|
score = eval_subject(
|
|
model,
|
|
tokenizer,
|
|
subject_name,
|
|
test_df,
|
|
dev_df=dev_df,
|
|
k=5,
|
|
few_shot=True,
|
|
save_result_dir=f"outs/mmlu_eval_result",
|
|
batch_size=args.batch_size
|
|
)
|
|
dev_result[subject_name] = score
|
|
cal_mmlu(dev_result)
|
|
|
|
|
|
TASK_NAME_MAPPING = {
|
|
"stem": [
|
|
"abstract_algebra",
|
|
"anatomy",
|
|
"astronomy",
|
|
"college_biology",
|
|
"college_chemistry",
|
|
"college_computer_science",
|
|
"college_mathematics",
|
|
"college_physics",
|
|
"computer_security",
|
|
"conceptual_physics",
|
|
"electrical_engineering",
|
|
"elementary_mathematics",
|
|
"high_school_biology",
|
|
"high_school_chemistry",
|
|
"high_school_computer_science",
|
|
"high_school_mathematics",
|
|
"high_school_physics",
|
|
"high_school_statistics",
|
|
"machine_learning",
|
|
],
|
|
"Humanities": [
|
|
"formal_logic",
|
|
"high_school_european_history",
|
|
"high_school_us_history",
|
|
"high_school_world_history",
|
|
"international_law",
|
|
"jurisprudence",
|
|
"logical_fallacies",
|
|
"moral_disputes",
|
|
"moral_scenarios",
|
|
"philosophy",
|
|
"prehistory",
|
|
"professional_law",
|
|
"world_religions",
|
|
],
|
|
"other": [
|
|
"business_ethics",
|
|
"college_medicine",
|
|
"human_aging",
|
|
"management",
|
|
"marketing",
|
|
"medical_genetics",
|
|
"miscellaneous",
|
|
"nutrition",
|
|
"professional_accounting",
|
|
"professional_medicine",
|
|
"virology",
|
|
"global_facts",
|
|
"clinical_knowledge",
|
|
],
|
|
"social": [
|
|
"econometrics",
|
|
"high_school_geography",
|
|
"high_school_government_and_politics",
|
|
"high_school_macroeconomics",
|
|
"high_school_microeconomics",
|
|
"high_school_psychology",
|
|
"human_sexuality",
|
|
"professional_psychology",
|
|
"public_relations",
|
|
"security_studies",
|
|
"sociology",
|
|
"us_foreign_policy",
|
|
],
|
|
}
|
|
SUBJECTS = [v for vl in TASK_NAME_MAPPING.values() for v in vl]
|
|
choices = ["A", "B", "C", "D"]
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Test HF checkpoint.")
|
|
parser.add_argument(
|
|
"-c",
|
|
"--checkpoint-path",
|
|
type=str,
|
|
help="Checkpoint path",
|
|
default="Qwen/Qwen-7B",
|
|
)
|
|
parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed")
|
|
parser.add_argument("--gpu", type=int, default=0, help="gpu id")
|
|
|
|
"""Provide extra arguments required for tasks."""
|
|
group = parser.add_argument_group(title="Evaluation options")
|
|
group.add_argument("-d", "--eval_data_path", type=str, help="Path to eval data")
|
|
group.add_argument(
|
|
"--max-seq-len",
|
|
type=int,
|
|
default=2048,
|
|
help="Size of the output generated text.",
|
|
)
|
|
group.add_argument(
|
|
"--debug", action="store_true", default=False, help="Print infos."
|
|
)
|
|
group.add_argument(
|
|
"--batch-size",
|
|
type=int,
|
|
default=1,
|
|
help="batch size",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
set_seed(args.seed)
|
|
|
|
main(args)
|