from fastllm_pytools import llm; import torch; import ctypes; import numpy as np; fastllm_data_type_dict = { "int4": 8, "int8": 3, "float16": 7 } fastllm_weight_type_dict = { "linear": 1, "embedding": 2, "QuantizedLinear": 111 } def create(model, tokenizer = None, pre_prompt = None, user_role = None, bot_role = None, history_sep = None, dtype = "float16"): if (dtype not in fastllm_data_type_dict): print("dtype should in ", list(fastllm_data_type_dict.keys())); exit(0); # 0.1 model info if model.config.model_type == "chatglm" and model.config.transformers_version == "4.30.2": model.config.model_type = "chatglm3" modelInfo = model.config.__dict__ if model.generation_config is not None: modelInfo.update(model.generation_config.__dict__) if (pre_prompt): modelInfo["pre_prompt"] = pre_prompt; if (user_role): modelInfo["user_role"] = user_role; if (bot_role): modelInfo["bot_role"] = bot_role; if (history_sep): modelInfo["history_sep"] = history_sep; if (modelInfo["model_type"] == "baichuan" and hasattr(model, "model") and hasattr(model.model, "get_alibi_mask")): # Baichuan 2代 modelInfo["use_alibi"] = "1"; modelInfo["pre_prompt"] = ""; modelInfo["user_role"] = (" ") if hasattr(model.generation_config, "user_token_id") else ""; modelInfo["bot_role"] = ("") if hasattr(model.generation_config, "assistant_token_id") else ""; modelInfo["history_sep"] = ""; if (modelInfo["model_type"] == "qwen"): if modelInfo["chat_format"] == "chatml": modelInfo["im_end_id"] = tokenizer.im_end_id modelInfo["im_start_id"] = tokenizer.im_start_id weight_type_dict = {}; module_dict = {}; weight_bits = {}; for key, m in model.named_modules(): if (str(type(m)).find("QuantizedLinear") != -1): weight_type_dict[key + ".weight"] = "QuantizedLinear"; weight_bits[key + ".weight"] = m.weight_bit_width; if (isinstance(m, torch.nn.Linear)): weight_type_dict[key + ".weight"] = "linear"; module_dict[key + ".weight"] = m; if (isinstance(m, torch.nn.Embedding)): weight_type_dict[key] = "embedding"; peft_config = {} active_adapter = "" if hasattr(model, "peft_config"): peft_config = model.peft_config if hasattr(model, "active_adapter") and isinstance(model.active_adapter, str): # in transformers >= 4.33.0, active_adapter is a funtion in model, ignore it now active_adapter = model.active_adapter model = model.cpu(); dict = model.state_dict(); model_type = model.config.__dict__["model_type"]; model = llm.fastllm_lib.create_empty_llm_model(model_type.encode()); for it in modelInfo.keys(): llm.fastllm_lib.add_dict_llm_model(model, str(it).encode(), str(modelInfo[it]).encode()); for adapter_name in peft_config.keys(): adapter_dict = peft_config[adapter_name].__dict__ for it in adapter_dict.keys(): llm.fastllm_lib.add_adapter_dict_llm_model(model, str(adapter_name).encode(), str(it).encode(), str(adapter_dict[it]).encode()) if len(active_adapter) != 0: llm.fastllm_lib.set_adapter(model, str(active_adapter).encode()) # 1. vocab if (tokenizer): if (hasattr(tokenizer, "tokenizer")): if modelInfo["model_type"] == "qwen": pass else: tokenizer = tokenizer.tokenizer; if (hasattr(tokenizer, "sp_model")): piece_size = tokenizer.sp_model.piece_size(); for i in range(piece_size): llm.fastllm_lib.add_tokenizer_word_llm_model(model, tokenizer.sp_model.id_to_piece(i).encode(), i, ctypes.c_float(tokenizer.sp_model.get_score(i))); else: vocab = tokenizer.get_vocab(); for v in vocab.keys(): if (modelInfo["model_type"] == "moss"): vv = [(ord(c) if c not in tokenizer.byte_decoder else tokenizer.byte_decoder[c]) for c in v]; llm.fastllm_lib.add_tokenizer_word_llm_model(model, vv, vocab[v], ctypes.c_float(1.0)); elif (modelInfo["model_type"] == "qwen"): llm.fastllm_lib.add_tokenizer_word_llm_model(model, v, vocab[v], ctypes.c_float(1.0)); else: llm.fastllm_lib.add_tokenizer_word_llm_model(model, v.encode(), vocab[v], ctypes.c_float(1.0)); tot = 0; for key in dict: ori_data_type = 0; ori_np_data_type = np.float32; cur_weight_type = 0; if (key in weight_type_dict and weight_type_dict[key] in fastllm_weight_type_dict): cur_weight_type = fastllm_weight_type_dict[weight_type_dict[key]]; to_data_type = 0; if (cur_weight_type == 1): to_data_type = fastllm_data_type_dict[dtype]; if (to_data_type == 7): ori_data_type = 7; ori_np_data_type = np.float16; elif (cur_weight_type == 2): # TODO bfloat to_data_type = 0; weight_name = key if peft_config is not None: weight_name = weight_name.replace('base_model.model.', '') if (cur_weight_type == 111): llm.fastllm_lib.add_qlinear_weight_llm_model(model, weight_name.encode(), len(dict[key].shape), (ctypes.c_int * len(dict[key].shape))(*list(dict[key].shape)), weight_bits[key], dict[key + "_scale"].numpy().astype(np.float32).ctypes.data_as(ctypes.c_void_p), dict[key].numpy().ctypes.data_as(ctypes.c_void_p)); else: llm.fastllm_lib.add_weight_llm_model(model, weight_name.encode(), len(dict[key].shape), (ctypes.c_int * len(dict[key].shape))(*list(dict[key].shape)), to_data_type, cur_weight_type, ori_data_type, dict[key].numpy().astype(ori_np_data_type).ctypes.data_as(ctypes.c_void_p)); tot += 1; print("convert (", tot, "/", len(dict), end = " )\r"); print(""); llm.fastllm_lib.init_params_llm_model(model); llm.fastllm_lib.warmup_llm_model(model); ret = llm.model("", id = model); return ret;