import os
import argparse
import re
import torch
import pandas as pd
from thefuzz import process
from tqdm import tqdm
from transformers.trainer_utils import set_seed
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig

'''
wget https://huggingface.co/datasets/ceval/ceval-exam/resolve/main/ceval-exam.zip
mkdir data/ceval
mv ceval-exam.zip data/ceval
cd data/ceval; unzip ceval-exam.zip
cd ../../

pip install thefuzz
python eval/evaluate_chat_ceval.py -d data/ceval
'''

def load_models_tokenizer(args):
    tokenizer = AutoTokenizer.from_pretrained(
        args.checkpoint_path, trust_remote_code=True
    )
    model = AutoModelForCausalLM.from_pretrained(
        args.checkpoint_path, device_map="auto", trust_remote_code=True
    ).eval()
    model.generation_config = GenerationConfig.from_pretrained(
        args.checkpoint_path, trust_remote_code=True
    )
    model.generation_config.do_sample = False  # use greedy decoding
    model.generation_config.repetition_penalty = 1.0  # disable repetition penalty
    return model, tokenizer

def process_before_extraction(gen, question, choice_dict):
    # Example Prompt:
    # 关于传输层的面向连接服务的特性是____。
    # A. 既不保证可靠,也不保证按序交付
    # B. 不保证可靠,但保证按序交付
    # C. 保证可靠,但不保证按序交付
    # D. 既保证可靠,也保证按序交付
    # Example Model Output:
    # 关于传输层的面向连接服务的特性是既保证可靠,也保证按序交付
    # Processed Output:
    # 答案是D

    question_split = question.rstrip("。").split("。")[-1].split("_")

    # replacing the question
    if len(question_split[0].strip()) > 4:
        gen = gen.replace(question_split[0], "答案是")
    if len(question_split[-1].strip()) > 4:
        gen = gen.replace(question_split[-1], "")

    # replace the choice by letter in the generated sentence
    # from longest one to shortest one
    for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True):
        gen = gen.replace(val.rstrip("。"), key)
    return gen


def count_substr(gen, pattern):
    return len(re.findall(pattern, gen))


def extract_choice(gen, prompt, choice_list):
    # 答案是A | 选项是A | 应该选A选项
    res = re.search(
        r"(?:(?:选|选择|选定)[::]?\s*|(?:(?:答案|选项)(?![^ABCD]{0,10}?(?:不|非)[^ABCD]{0,10}?(?:是|选|为|:|:|】))[^ABCD]{0,10}?(?:是|选|为|:|:|】))[^ABCD]{0,10}?)(A|B|C|D)(?:选项)?(?:\)|。|\.|,|,|.|、|A|B|C|D|$|:|:|\)|))",
        gen,
    )

    # A选项正确 | A选项符合题意
    if res is None:
        res = re.search(
            r"(A|B|C|D)(?:选?项)?(?![^ABCD]{0,4}?(?:不|非)[^ABCD]{0,4}?(?:正确|对[的,。:]|符合))[^ABCD]{0,4}?(?:正确|对[的,。:]|符合)",
            gen,
        )

    # 直接输出 A
    if res is None:
        res = re.search(r"^[\((]?(A|B|C|D)(?:。|\)|)|\.|,|,|.|:|:|$)", gen)

    # 获取第一个出现的字母
    if res is None:
        res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen)

    if res is None:
        return choices[choice_list.index(process.extractOne(gen, choice_list)[0])]
    return res.group(1)


def format_example(line):
    example = line["question"] + "\n\n"
    for choice in choices:
        example += f'{choice}. {line[f"{choice}"]}\n'
    return example


def extract_answer(response, row):
    prompt = row["question"]
    gen = process_before_extraction(
        response, prompt, {choice: row[choice] for choice in choices}
    )
    if not isinstance(prompt, str):
        prompt = prompt[0]
    pred = extract_choice(gen, prompt, [row[choice] for choice in choices])
    return pred


@torch.no_grad()
def eval_subject(
    model,
    tokenizer,
    subject_name,
    test_df,
    save_result_dir=None,
    overwrite=False,
    **kwargs
):
    result_path = os.path.join(save_result_dir, f"{subject_name}_result.csv")
    if not overwrite and os.path.exists(result_path):
        print(f"{result_path} existed, skip!")
        score = []
        for (_, datarow), (_, resultrow) in zip(
            test_df.iterrows(), pd.read_csv(result_path).iterrows()
        ):
            pred = extract_answer(resultrow["model_response"], datarow)
            correct = 1 if pred == datarow["answer"] else 0
            score.append(correct)
        correct_ratio = 100 * sum(score) / len(score)
        return correct_ratio

    responses = []
    result = []
    score = []

    for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
        question = format_example(row)

        response, _ = model.chat(
            tokenizer,
            question,
            history=None,
        )
        print(question)
        print(response)
        pred = extract_answer(response, row)
        print(pred)
        print("======================")

        if "answer" in row:
            correct = 1 if pred == row["answer"] else 0
            score.append(correct)
            if args.debug:
                print(f'{question} pred: {pred} ref: {row["answer"]}')
        responses.append(response)
        result.append(pred)

    if score:
        correct_ratio = 100 * sum(score) / len(score)
        if args.debug:
            print(subject_name, correct_ratio)
    else:
        correct_ratio = 0
    if save_result_dir:
        test_df["model_response"] = responses
        test_df["model_output"] = result
        if score:
            test_df["correctness"] = score
        os.makedirs(save_result_dir, exist_ok=True)
        test_df.to_csv(result_path, encoding="utf-8", index=False)

    return correct_ratio


def cal_ceval(res):
    acc_sum_dict = dict()
    acc_norm_sum_dict = dict()
    cnt_dict = dict()
    acc_sum = 0.0
    cnt = 0
    hard_cnt = 0
    hard_acc_sum = 0.0
    for tt in res.keys():
        name = tt.split("-")[-1]
        acc_sum += float(res[tt])
        cnt += 1
        class_ = TASK_NAME_MAPPING[name][2]
        if class_ not in acc_sum_dict:
            acc_sum_dict[class_] = 0.0
            acc_norm_sum_dict[class_] = 0.0
            cnt_dict[class_] = 0.0
        if name in hard_list:
            hard_cnt += 1
            hard_acc_sum += float(res[tt])
        acc_sum_dict[class_] += float(res[tt])
        cnt_dict[class_] += 1
    print("\n\n\n")
    for k in ["STEM", "Social Science", "Humanities", "Other"]:
        if k in cnt_dict:
            print("%s acc: %.2f " % (k, acc_sum_dict[k] / cnt_dict[k]))
    if hard_cnt > 0:
        print("Hard acc:%.2f " % (hard_acc_sum / hard_cnt))
    print("AVERAGE acc:%.2f " % (acc_sum / cnt))


TASK_NAME_MAPPING = {
    "computer_network": ["Computer Network", "\u8ba1\u7b97\u673a\u7f51\u7edc", "STEM"],
    "operating_system": ["Operating System", "\u64cd\u4f5c\u7cfb\u7edf", "STEM"],
    "computer_architecture": [
        "Computer Architecture",
        "\u8ba1\u7b97\u673a\u7ec4\u6210",
        "STEM",
    ],
    "college_programming": ["College Programming", "\u5927\u5b66\u7f16\u7a0b", "STEM"],
    "college_physics": ["College Physics", "\u5927\u5b66\u7269\u7406", "STEM"],
    "college_chemistry": ["College Chemistry", "\u5927\u5b66\u5316\u5b66", "STEM"],
    "advanced_mathematics": [
        "Advanced Mathematics",
        "\u9ad8\u7b49\u6570\u5b66",
        "STEM",
    ],
    "probability_and_statistics": [
        "Probability and Statistics",
        "\u6982\u7387\u7edf\u8ba1",
        "STEM",
    ],
    "discrete_mathematics": [
        "Discrete Mathematics",
        "\u79bb\u6563\u6570\u5b66",
        "STEM",
    ],
    "electrical_engineer": [
        "Electrical Engineer",
        "\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08",
        "STEM",
    ],
    "metrology_engineer": [
        "Metrology Engineer",
        "\u6ce8\u518c\u8ba1\u91cf\u5e08",
        "STEM",
    ],
    "high_school_mathematics": [
        "High School Mathematics",
        "\u9ad8\u4e2d\u6570\u5b66",
        "STEM",
    ],
    "high_school_physics": ["High School Physics", "\u9ad8\u4e2d\u7269\u7406", "STEM"],
    "high_school_chemistry": [
        "High School Chemistry",
        "\u9ad8\u4e2d\u5316\u5b66",
        "STEM",
    ],
    "high_school_biology": ["High School Biology", "\u9ad8\u4e2d\u751f\u7269", "STEM"],
    "middle_school_mathematics": [
        "Middle School Mathematics",
        "\u521d\u4e2d\u6570\u5b66",
        "STEM",
    ],
    "middle_school_biology": [
        "Middle School Biology",
        "\u521d\u4e2d\u751f\u7269",
        "STEM",
    ],
    "middle_school_physics": [
        "Middle School Physics",
        "\u521d\u4e2d\u7269\u7406",
        "STEM",
    ],
    "middle_school_chemistry": [
        "Middle School Chemistry",
        "\u521d\u4e2d\u5316\u5b66",
        "STEM",
    ],
    "veterinary_medicine": ["Veterinary Medicine", "\u517d\u533b\u5b66", "STEM"],
    "college_economics": [
        "College Economics",
        "\u5927\u5b66\u7ecf\u6d4e\u5b66",
        "Social Science",
    ],
    "business_administration": [
        "Business Administration",
        "\u5de5\u5546\u7ba1\u7406",
        "Social Science",
    ],
    "marxism": [
        "Marxism",
        "\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406",
        "Social Science",
    ],
    "mao_zedong_thought": [
        "Mao Zedong Thought",
        "\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba",
        "Social Science",
    ],
    "education_science": ["Education Science", "\u6559\u80b2\u5b66", "Social Science"],
    "teacher_qualification": [
        "Teacher Qualification",
        "\u6559\u5e08\u8d44\u683c",
        "Social Science",
    ],
    "high_school_politics": [
        "High School Politics",
        "\u9ad8\u4e2d\u653f\u6cbb",
        "Social Science",
    ],
    "high_school_geography": [
        "High School Geography",
        "\u9ad8\u4e2d\u5730\u7406",
        "Social Science",
    ],
    "middle_school_politics": [
        "Middle School Politics",
        "\u521d\u4e2d\u653f\u6cbb",
        "Social Science",
    ],
    "middle_school_geography": [
        "Middle School Geography",
        "\u521d\u4e2d\u5730\u7406",
        "Social Science",
    ],
    "modern_chinese_history": [
        "Modern Chinese History",
        "\u8fd1\u4ee3\u53f2\u7eb2\u8981",
        "Humanities",
    ],
    "ideological_and_moral_cultivation": [
        "Ideological and Moral Cultivation",
        "\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840",
        "Humanities",
    ],
    "logic": ["Logic", "\u903b\u8f91\u5b66", "Humanities"],
    "law": ["Law", "\u6cd5\u5b66", "Humanities"],
    "chinese_language_and_literature": [
        "Chinese Language and Literature",
        "\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66",
        "Humanities",
    ],
    "art_studies": ["Art Studies", "\u827a\u672f\u5b66", "Humanities"],
    "professional_tour_guide": [
        "Professional Tour Guide",
        "\u5bfc\u6e38\u8d44\u683c",
        "Humanities",
    ],
    "legal_professional": [
        "Legal Professional",
        "\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c",
        "Humanities",
    ],
    "high_school_chinese": [
        "High School Chinese",
        "\u9ad8\u4e2d\u8bed\u6587",
        "Humanities",
    ],
    "high_school_history": [
        "High School History",
        "\u9ad8\u4e2d\u5386\u53f2",
        "Humanities",
    ],
    "middle_school_history": [
        "Middle School History",
        "\u521d\u4e2d\u5386\u53f2",
        "Humanities",
    ],
    "civil_servant": ["Civil Servant", "\u516c\u52a1\u5458", "Other"],
    "sports_science": ["Sports Science", "\u4f53\u80b2\u5b66", "Other"],
    "plant_protection": ["Plant Protection", "\u690d\u7269\u4fdd\u62a4", "Other"],
    "basic_medicine": ["Basic Medicine", "\u57fa\u7840\u533b\u5b66", "Other"],
    "clinical_medicine": ["Clinical Medicine", "\u4e34\u5e8a\u533b\u5b66", "Other"],
    "urban_and_rural_planner": [
        "Urban and Rural Planner",
        "\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08",
        "Other",
    ],
    "accountant": ["Accountant", "\u6ce8\u518c\u4f1a\u8ba1\u5e08", "Other"],
    "fire_engineer": [
        "Fire Engineer",
        "\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08",
        "Other",
    ],
    "environmental_impact_assessment_engineer": [
        "Environmental Impact Assessment Engineer",
        "\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08",
        "Other",
    ],
    "tax_accountant": ["Tax Accountant", "\u7a0e\u52a1\u5e08", "Other"],
    "physician": ["Physician", "\u533b\u5e08\u8d44\u683c", "Other"],
}
hard_list = [
    "advanced_mathematics",
    "discrete_mathematics",
    "probability_and_statistics",
    "college_physics",
    "college_chemistry",
    "high_school_mathematics",
    "high_school_physics",
    "high_school_chemistry",
]
choices = ["A", "B", "C", "D"]


def main(args):
    print("loading model weights")
    if args.checkpoint_path:
        model, tokenizer = load_models_tokenizer(args)
    else:
        model, tokenizer = None, None
    print("model loaded")
    dev_result = {}
    for subject_name in tqdm(TASK_NAME_MAPPING.keys()):
        val_file_path = os.path.join(
            args.eval_data_path, "val", f"{subject_name}_val.csv"
        )
        val_df = pd.read_csv(val_file_path)

        score = eval_subject(
            model,
            tokenizer,
            subject_name,
            val_df,
            save_result_dir="outs_chat/ceval_eval_result",
            overwrite=args.overwrite,
        )
        dev_result[subject_name] = score
    cal_ceval(dev_result)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Test HF checkpoint.")
    parser.add_argument(
        "-c",
        "--checkpoint-path",
        type=str,
        help="Checkpoint path",
        default="Qwen/Qwen-7B-Chat",
    )
    parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed")

    # Provide extra arguments required for tasks
    group = parser.add_argument_group(title="Evaluation options")
    group.add_argument(
        "-d", "--eval_data_path", type=str, required=True, help="Path to eval data"
    )
    group.add_argument(
        "--debug", action="store_true", default=False, help="Print infos."
    )
    group.add_argument(
        "--overwrite",
        action="store_true",
        default=False,
        help="Overwrite existed results",
    )

    args = parser.parse_args()
    set_seed(args.seed)

    main(args)