#!/bin/bash export CUDA_DEVICE_MAX_CONNECTIONS=1 DIR=`pwd` GPUS_PER_NODE=8 NNODES=1 NODE_RANK=0 MASTER_ADDR=localhost MASTER_PORT=6001 MODEL="Qwen/Qwen-7B" # Set the path if you do not want to load from huggingface directly # ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations. # See the section for finetuning in README for more information. DATA="path_to_data" DISTRIBUTED_ARGS=" --nproc_per_node $GPUS_PER_NODE \ --nnodes $NNODES \ --node_rank $NODE_RANK \ --master_addr $MASTER_ADDR \ --master_port $MASTER_PORT " torchrun $DISTRIBUTED_ARGS finetune.py \ --model_name_or_path $MODEL \ --data_path $DATA \ --bf16 True \ --output_dir output_qwen \ --num_train_epochs 5 \ --per_device_train_batch_size 2 \ --per_device_eval_batch_size 1 \ --gradient_accumulation_steps 8 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 1000 \ --save_total_limit 10 \ --learning_rate 3e-4 \ --weight_decay 0.1 \ --adam_beta2 0.95 \ --warmup_ratio 0.01 \ --lr_scheduler_type "cosine" \ --logging_steps 1 \ --report_to "none" \ --model_max_length 512 \ --lazy_preprocess True \ --use_lora \ --gradient_checkpointing \ --deepspeed finetune/ds_config_zero2.json