#!/bin/bash export CUDA_DEVICE_MAX_CONNECTIONS=1 MODEL="Qwen/Qwen-7B" # Set the path if you do not want to load from huggingface directly # ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations. # See the section for finetuning in README for more information. DATA="path_to_data" function usage() { echo ' Usage: bash finetune/finetune_lora_single_gpu.sh [-m MODEL_PATH] [-d DATA_PATH] ' } while [[ "$1" != "" ]]; do case $1 in -m | --model ) shift MODEL=$1 ;; -d | --data ) shift DATA=$1 ;; -h | --help ) usage exit 0 ;; * ) echo "Unknown argument ${1}" exit 1 ;; esac shift done export CUDA_VISIBLE_DEVICES=0 python finetune.py \ --model_name_or_path $MODEL \ --data_path $DATA \ --bf16 True \ --output_dir output_qwen \ --num_train_epochs 5 \ --per_device_train_batch_size 2 \ --per_device_eval_batch_size 1 \ --gradient_accumulation_steps 8 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 1000 \ --save_total_limit 10 \ --learning_rate 3e-4 \ --weight_decay 0.1 \ --adam_beta2 0.95 \ --warmup_ratio 0.01 \ --lr_scheduler_type "cosine" \ --logging_steps 1 \ --report_to "none" \ --model_max_length 512 \ --lazy_preprocess True \ --gradient_checkpointing \ --use_lora # If you use fp16 instead of bf16, you should use deepspeed # --fp16 True --deepspeed finetune/ds_config_zero2.json