import os
from typing import List
import pandas as pd
import numpy as np
import argparse
import torch
from tqdm import tqdm
from transformers.trainer_utils import set_seed
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig

"""
wget https://people.eecs.berkeley.edu/~hendrycks/data.tar
mkdir data/mmlu
mv data.tar data/mmlu
cd data/mmlu; tar xf data.tar
cd ../../
python eval/evaluate_mmlu.py -d data/mmlu/data/
"""


def load_models_tokenizer(args):
    tokenizer = AutoTokenizer.from_pretrained(
        args.checkpoint_path, trust_remote_code=True
    )
    model = AutoModelForCausalLM.from_pretrained(
        args.checkpoint_path, device_map="auto", trust_remote_code=True
    ).eval()
    model.generation_config = GenerationConfig.from_pretrained(
        args.checkpoint_path, trust_remote_code=True
    )
    return model, tokenizer


def format_example(line, include_answer=True):
    example = "Question: " + line["question"]
    for choice in choices:
        example += f'\n{choice}. {line[f"{choice}"]}'

    if include_answer:
        example += "\nAnswer: " + line["answer"] + "\n\n"
    else:
        example += "\nAnswer:"
    return example


def generate_few_shot_prompt(k, subject, dev_df):
    def format_subject(subject):
        l = subject.split("_")
        s = ""
        for entry in l:
            s += " " + entry
        return s.strip()

    prompt = "The following are multiple choice questions (with answers) about {}.\n\n".format(
        format_subject(subject)
    )

    if k == -1:
        k = dev_df.shape[0]
    for i in range(k):
        prompt += format_example(
            dev_df.iloc[i, :],
            include_answer=True,
        )
    return prompt


def get_logits(tokenizer, model, inputs: List[str]):
    input_ids = tokenizer(inputs, padding=False)["input_ids"]
    input_ids = torch.tensor(input_ids, device=model.device)

    if input_ids.shape[1] > args.max_seq_len:
        input_ids = input_ids[:, input_ids.shape[1] - args.max_seq_len + 1 :]
    tokens = {"input_ids": input_ids}

    outputs = model(input_ids)["logits"]
    logits = outputs[:, -1, :]
    log_probs = torch.nn.functional.softmax(logits, dim=-1)
    return log_probs, {"tokens": tokens}


@torch.no_grad()
def eval_subject(
    model,
    tokenizer,
    subject_name,
    test_df,
    k=5,
    dev_df=None,
    few_shot=False,
    save_result_dir=None,
    **kwargs,
):
    result = []
    score = []

    few_shot_prompt = (
        generate_few_shot_prompt(k, subject_name, dev_df) if few_shot else []
    )
    all_probs = {"prob_A": [], "prob_B": [], "prob_C": [], "prob_D": []}
    if args.debug:
        print(f"few_shot_prompt: {few_shot_prompt}")

    for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
        question = format_example(row, include_answer=False)
        full_prompt = few_shot_prompt + question

        output, input_info = get_logits(tokenizer, model, [full_prompt])
        assert output.shape[0] == 1
        logits = output.flatten()

        softval = torch.nn.functional.softmax(
            torch.tensor(
                [
                    logits[tokenizer(" A")["input_ids"]],
                    logits[tokenizer(" B")["input_ids"]],
                    logits[tokenizer(" C")["input_ids"]],
                    logits[tokenizer(" D")["input_ids"]],
                ]
            ),
            dim=0,
        )
        if softval.dtype in {torch.bfloat16, torch.float16}:
            softval = softval.to(dtype=torch.float32)
        probs = softval.detach().cpu().numpy()

        for i, choice in enumerate(choices):
            all_probs[f"prob_{choice}"].append(probs[i])
        pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs)]

        if "answer" in row:
            correct = 1 if pred == row["answer"] else 0
            score.append(correct)
            if args.debug:
                print(f'{question} pred: {pred} ref: {row["answer"]}')
        result.append(pred)

    if save_result_dir:
        test_df["model_output"] = result
        for i, choice in enumerate(choices):
            test_df[f"prob_{choice}"] = all_probs[f"prob_{choice}"]
        if score:
            test_df["correctness"] = score
        os.makedirs(save_result_dir, exist_ok=True)
        test_df.to_csv(
            os.path.join(save_result_dir, f"{subject_name}_result.csv"),
            encoding="utf-8",
            index=False,
        )

    return score


def cal_mmlu(res):
    acc_sum_dict = dict()
    acc_norm_sum_dict = dict()
    cnt_dict = dict()
    acc_sum = 0.0
    cnt = 0
    hard_cnt = 0
    hard_acc_sum = 0.0

    for class_ in TASK_NAME_MAPPING.keys():
        acc_sum_dict[class_] = 0.0
        acc_norm_sum_dict[class_] = 0.0
        cnt_dict[class_] = 0.0

        for tt in TASK_NAME_MAPPING[class_]:
            acc_sum += sum(res[tt])
            cnt += len(res[tt])

            acc_sum_dict[class_] += sum(res[tt])
            cnt_dict[class_] += len(res[tt])

    print("\n\n\n", "total cnt:", cnt, "\n")
    for k in TASK_NAME_MAPPING.keys():
        if k in cnt_dict:
            print("%s ACC: %.2f " % (k, acc_sum_dict[k] / cnt_dict[k] * 100))
    print("AVERAGE ACC:%.2f " % (acc_sum / cnt * 100))


def main(args):
    model, tokenizer = load_models_tokenizer(args)

    dev_result = {}
    for subject_name in tqdm(SUBJECTS):
        # val_file_path = os.path.join(args.eval_data_path, 'val', f'{subject_name}_val.csv')
        dev_file_path = os.path.join(
            args.eval_data_path, "dev", f"{subject_name}_dev.csv"
        )
        test_file_path = os.path.join(
            args.eval_data_path, "test", f"{subject_name}_test.csv"
        )
        # val_df = pd.read_csv(val_file_path, names=['question','A','B','C','D','answer'])
        dev_df = pd.read_csv(
            dev_file_path, names=["question", "A", "B", "C", "D", "answer"]
        )
        test_df = pd.read_csv(
            test_file_path, names=["question", "A", "B", "C", "D", "answer"]
        )

        score = eval_subject(
            model,
            tokenizer,
            subject_name,
            test_df,
            dev_df=dev_df,
            k=5,
            few_shot=True,
            save_result_dir=f"outs/mmlu_eval_result",
        )
        dev_result[subject_name] = score
    cal_mmlu(dev_result)


TASK_NAME_MAPPING = {
    "stem": [
        "abstract_algebra",
        "anatomy",
        "astronomy",
        "college_biology",
        "college_chemistry",
        "college_computer_science",
        "college_mathematics",
        "college_physics",
        "computer_security",
        "conceptual_physics",
        "electrical_engineering",
        "elementary_mathematics",
        "high_school_biology",
        "high_school_chemistry",
        "high_school_computer_science",
        "high_school_mathematics",
        "high_school_physics",
        "high_school_statistics",
        "machine_learning",
    ],
    "Humanities": [
        "formal_logic",
        "high_school_european_history",
        "high_school_us_history",
        "high_school_world_history",
        "international_law",
        "jurisprudence",
        "logical_fallacies",
        "moral_disputes",
        "moral_scenarios",
        "philosophy",
        "prehistory",
        "professional_law",
        "world_religions",
    ],
    "other": [
        "business_ethics",
        "college_medicine",
        "human_aging",
        "management",
        "marketing",
        "medical_genetics",
        "miscellaneous",
        "nutrition",
        "professional_accounting",
        "professional_medicine",
        "virology",
        "global_facts",
        "clinical_knowledge",
    ],
    "social": [
        "econometrics",
        "high_school_geography",
        "high_school_government_and_politics",
        "high_school_macroeconomics",
        "high_school_microeconomics",
        "high_school_psychology",
        "human_sexuality",
        "professional_psychology",
        "public_relations",
        "security_studies",
        "sociology",
        "us_foreign_policy",
    ],
}
SUBJECTS = [v for vl in TASK_NAME_MAPPING.values() for v in vl]
choices = ["A", "B", "C", "D"]

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Test HF checkpoint.")
    parser.add_argument(
        "-c",
        "--checkpoint-path",
        type=str,
        help="Checkpoint path",
        default="Qwen/Qwen-7B",
    )
    parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed")
    parser.add_argument("--gpu", type=int, default=0, help="gpu id")

    """Provide extra arguments required for tasks."""
    group = parser.add_argument_group(title="Evaluation options")
    group.add_argument("-d", "--eval_data_path", type=str, help="Path to eval data")
    group.add_argument(
        "--max-seq-len",
        type=int,
        default=2048,
        help="Size of the output generated text.",
    )
    group.add_argument(
        "--debug", action="store_true", default=False, help="Print infos."
    )

    args = parser.parse_args()
    set_seed(args.seed)

    main(args)