import os import argparse import re import torch import pandas as pd from thefuzz import process from tqdm import tqdm from transformers.trainer_utils import set_seed from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig ''' wget https://huggingface.co/datasets/ceval/ceval-exam/resolve/main/ceval-exam.zip mkdir data/ceval mv ceval-exam.zip data/ceval cd data/ceval; unzip ceval-exam.zip cd ../../ pip install thefuzz python eval/evaluate_chat_ceval.py -d data/ceval ''' def load_models_tokenizer(args): tokenizer = AutoTokenizer.from_pretrained( args.checkpoint_path, trust_remote_code=True ) model = AutoModelForCausalLM.from_pretrained( args.checkpoint_path, device_map="auto", trust_remote_code=True ).eval() model.generation_config = GenerationConfig.from_pretrained( args.checkpoint_path, trust_remote_code=True ) model.generation_config.do_sample = False # use greedy decoding model.generation_config.repetition_penalty = 1.0 # disable repetition penalty return model, tokenizer def process_before_extraction(gen, question, choice_dict): # Example Prompt: # 关于传输层的面向连接服务的特性是____。 # A. 既不保证可靠,也不保证按序交付 # B. 不保证可靠,但保证按序交付 # C. 保证可靠,但不保证按序交付 # D. 既保证可靠,也保证按序交付 # Example Model Output: # 关于传输层的面向连接服务的特性是既保证可靠,也保证按序交付 # Processed Output: # 答案是D question_split = question.rstrip("。").split("。")[-1].split("_") # replacing the question if len(question_split[0].strip()) > 4: gen = gen.replace(question_split[0], "答案是") if len(question_split[-1].strip()) > 4: gen = gen.replace(question_split[-1], "") # replace the choice by letter in the generated sentence # from longest one to shortest one for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True): gen = gen.replace(val.rstrip("。"), key) return gen def count_substr(gen, pattern): return len(re.findall(pattern, gen)) def extract_choice(gen, prompt, choice_list): # 答案是A | 选项是A | 应该选A选项 res = re.search( r"(?:(?:选|选择|选定)[::]?\s*|(?:(?:答案|选项)(?![^ABCD]{0,10}?(?:不|非)[^ABCD]{0,10}?(?:是|选|为|:|:|】))[^ABCD]{0,10}?(?:是|选|为|:|:|】))[^ABCD]{0,10}?)(A|B|C|D)(?:选项)?(?:\)|。|\.|,|,|.|、|A|B|C|D|$|:|:|\)|))", gen, ) # A选项正确 | A选项符合题意 if res is None: res = re.search( r"(A|B|C|D)(?:选?项)?(?![^ABCD]{0,4}?(?:不|非)[^ABCD]{0,4}?(?:正确|对[的,。:]|符合))[^ABCD]{0,4}?(?:正确|对[的,。:]|符合)", gen, ) # 直接输出 A if res is None: res = re.search(r"^[\((]?(A|B|C|D)(?:。|\)|)|\.|,|,|.|:|:|$)", gen) # 获取第一个出现的字母 if res is None: res = re.search(r"(? 0: print("Hard acc:%.2f " % (hard_acc_sum / hard_cnt)) print("AVERAGE acc:%.2f " % (acc_sum / cnt)) TASK_NAME_MAPPING = { "computer_network": ["Computer Network", "\u8ba1\u7b97\u673a\u7f51\u7edc", "STEM"], "operating_system": ["Operating System", "\u64cd\u4f5c\u7cfb\u7edf", "STEM"], "computer_architecture": [ "Computer Architecture", "\u8ba1\u7b97\u673a\u7ec4\u6210", "STEM", ], "college_programming": ["College Programming", "\u5927\u5b66\u7f16\u7a0b", "STEM"], "college_physics": ["College Physics", "\u5927\u5b66\u7269\u7406", "STEM"], "college_chemistry": ["College Chemistry", "\u5927\u5b66\u5316\u5b66", "STEM"], "advanced_mathematics": [ "Advanced Mathematics", "\u9ad8\u7b49\u6570\u5b66", "STEM", ], "probability_and_statistics": [ "Probability and Statistics", "\u6982\u7387\u7edf\u8ba1", "STEM", ], "discrete_mathematics": [ "Discrete Mathematics", "\u79bb\u6563\u6570\u5b66", "STEM", ], "electrical_engineer": [ "Electrical Engineer", "\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08", "STEM", ], "metrology_engineer": [ "Metrology Engineer", "\u6ce8\u518c\u8ba1\u91cf\u5e08", "STEM", ], "high_school_mathematics": [ "High School Mathematics", "\u9ad8\u4e2d\u6570\u5b66", "STEM", ], "high_school_physics": ["High School Physics", "\u9ad8\u4e2d\u7269\u7406", "STEM"], "high_school_chemistry": [ "High School Chemistry", "\u9ad8\u4e2d\u5316\u5b66", "STEM", ], "high_school_biology": ["High School Biology", "\u9ad8\u4e2d\u751f\u7269", "STEM"], "middle_school_mathematics": [ "Middle School Mathematics", "\u521d\u4e2d\u6570\u5b66", "STEM", ], "middle_school_biology": [ "Middle School Biology", "\u521d\u4e2d\u751f\u7269", "STEM", ], "middle_school_physics": [ "Middle School Physics", "\u521d\u4e2d\u7269\u7406", "STEM", ], "middle_school_chemistry": [ "Middle School Chemistry", "\u521d\u4e2d\u5316\u5b66", "STEM", ], "veterinary_medicine": ["Veterinary Medicine", "\u517d\u533b\u5b66", "STEM"], "college_economics": [ "College Economics", "\u5927\u5b66\u7ecf\u6d4e\u5b66", "Social Science", ], "business_administration": [ "Business Administration", "\u5de5\u5546\u7ba1\u7406", "Social Science", ], "marxism": [ "Marxism", "\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406", "Social Science", ], "mao_zedong_thought": [ "Mao Zedong Thought", "\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba", "Social Science", ], "education_science": ["Education Science", "\u6559\u80b2\u5b66", "Social Science"], "teacher_qualification": [ "Teacher Qualification", "\u6559\u5e08\u8d44\u683c", "Social Science", ], "high_school_politics": [ "High School Politics", "\u9ad8\u4e2d\u653f\u6cbb", "Social Science", ], "high_school_geography": [ "High School Geography", "\u9ad8\u4e2d\u5730\u7406", "Social Science", ], "middle_school_politics": [ "Middle School Politics", "\u521d\u4e2d\u653f\u6cbb", "Social Science", ], "middle_school_geography": [ "Middle School Geography", "\u521d\u4e2d\u5730\u7406", "Social Science", ], "modern_chinese_history": [ "Modern Chinese History", "\u8fd1\u4ee3\u53f2\u7eb2\u8981", "Humanities", ], "ideological_and_moral_cultivation": [ "Ideological and Moral Cultivation", "\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840", "Humanities", ], "logic": ["Logic", "\u903b\u8f91\u5b66", "Humanities"], "law": ["Law", "\u6cd5\u5b66", "Humanities"], "chinese_language_and_literature": [ "Chinese Language and Literature", "\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66", "Humanities", ], "art_studies": ["Art Studies", "\u827a\u672f\u5b66", "Humanities"], "professional_tour_guide": [ "Professional Tour Guide", "\u5bfc\u6e38\u8d44\u683c", "Humanities", ], "legal_professional": [ "Legal Professional", "\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c", "Humanities", ], "high_school_chinese": [ "High School Chinese", "\u9ad8\u4e2d\u8bed\u6587", "Humanities", ], "high_school_history": [ "High School History", "\u9ad8\u4e2d\u5386\u53f2", "Humanities", ], "middle_school_history": [ "Middle School History", "\u521d\u4e2d\u5386\u53f2", "Humanities", ], "civil_servant": ["Civil Servant", "\u516c\u52a1\u5458", "Other"], "sports_science": ["Sports Science", "\u4f53\u80b2\u5b66", "Other"], "plant_protection": ["Plant Protection", "\u690d\u7269\u4fdd\u62a4", "Other"], "basic_medicine": ["Basic Medicine", "\u57fa\u7840\u533b\u5b66", "Other"], "clinical_medicine": ["Clinical Medicine", "\u4e34\u5e8a\u533b\u5b66", "Other"], "urban_and_rural_planner": [ "Urban and Rural Planner", "\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08", "Other", ], "accountant": ["Accountant", "\u6ce8\u518c\u4f1a\u8ba1\u5e08", "Other"], "fire_engineer": [ "Fire Engineer", "\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08", "Other", ], "environmental_impact_assessment_engineer": [ "Environmental Impact Assessment Engineer", "\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08", "Other", ], "tax_accountant": ["Tax Accountant", "\u7a0e\u52a1\u5e08", "Other"], "physician": ["Physician", "\u533b\u5e08\u8d44\u683c", "Other"], } hard_list = [ "advanced_mathematics", "discrete_mathematics", "probability_and_statistics", "college_physics", "college_chemistry", "high_school_mathematics", "high_school_physics", "high_school_chemistry", ] choices = ["A", "B", "C", "D"] def main(args): print("loading model weights") if args.checkpoint_path: model, tokenizer = load_models_tokenizer(args) else: model, tokenizer = None, None print("model loaded") dev_result = {} for subject_name in tqdm(TASK_NAME_MAPPING.keys()): val_file_path = os.path.join( args.eval_data_path, "val", f"{subject_name}_val.csv" ) val_df = pd.read_csv(val_file_path) score = eval_subject( model, tokenizer, subject_name, val_df, save_result_dir="outs_chat/ceval_eval_result", overwrite=args.overwrite, ) dev_result[subject_name] = score cal_ceval(dev_result) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Test HF checkpoint.") parser.add_argument( "-c", "--checkpoint-path", type=str, help="Checkpoint path", default="Qwen/Qwen-7B-Chat", ) parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed") # Provide extra arguments required for tasks group = parser.add_argument_group(title="Evaluation options") group.add_argument( "-d", "--eval_data_path", type=str, required=True, help="Path to eval data" ) group.add_argument( "--debug", action="store_true", default=False, help="Print infos." ) group.add_argument( "--overwrite", action="store_true", default=False, help="Overwrite existed results", ) args = parser.parse_args() set_seed(args.seed) main(args)