# # 相关材料: # ReAct Prompting 原理简要介绍,不包含代码实现: # https://github.com/QwenLM/Qwen-7B/blob/main/examples/react_prompt.md # 基于 model.chat 接口(对话模式)的 ReAct Prompting 实现(含接入 LangChain 的工具实现): # https://github.com/QwenLM/Qwen-7B/blob/main/examples/langchain_tooluse.ipynb # 基于 model.generate 接口(续写模式)的 ReAct Prompting 实现,比 chat 模式的实现更复杂些: # https://github.com/QwenLM/Qwen-7B/blob/main/examples/react_demo.py(本文件) # import json import os import json5 import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig for _ in range(10): # 网络不稳定,多试几次 try: name = 'Qwen/Qwen-7B-Chat' tokenizer = AutoTokenizer.from_pretrained(name, trust_remote_code=True) generation_config = GenerationConfig.from_pretrained(name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( name, device_map="auto", trust_remote_code=True ).eval() model.generation_config = generation_config model.generation_config.top_k = 1 break except Exception as e: print(e) # 将一个插件的关键信息拼接成一段文本的模版。 TOOL_DESC = """{name_for_model}: Call this tool to interact with the {name_for_human} API. What is the {name_for_human} API useful for? {description_for_model} Parameters: {parameters}""" # ReAct prompting 的 instruction 模版,将包含插件的详细信息。 PROMPT_REACT = """Answer the following questions as best you can. You have access to the following APIs: {tools_text} Use the following format: Question: the input question you must answer Thought: you should always think about what to do Action: the action to take, should be one of [{tools_name_text}] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can be repeated zero or more times) Thought: I now know the final answer Final Answer: the final answer to the original input question Begin! Question: {query}""" # # 本示例代码的入口函数。 # # 输入: # prompt: 用户的最新一个问题。 # history: 用户与模型的对话历史,是一个 list, # list 中的每个元素为 {"user": "用户输入", "bot": "模型输出"} 的一轮对话。 # 最新的一轮对话放 list 末尾。不包含最新一个问题。 # list_of_plugin_info: 候选插件列表,是一个 list,list 中的每个元素为一个插件的关键信息。 # 比如 list_of_plugin_info = [plugin_info_0, plugin_info_1, plugin_info_2], # 其中 plugin_info_0, plugin_info_1, plugin_info_2 这几个样例见本文档前文。 # # 输出: # 模型对用户最新一个问题的回答。 # def llm_with_plugin(prompt: str, history, list_of_plugin_info=()): chat_history = [(x['user'], x['bot']) for x in history] + [(prompt, '')] # 需要让模型进行续写的初始文本 planning_prompt = build_input_text(chat_history, list_of_plugin_info) text = '' while True: output = text_completion(planning_prompt + text, stop_words=['Observation:', 'Observation:\n']) action, action_input, output = parse_latest_plugin_call(output) if action: # 需要调用插件 # action、action_input 分别为需要调用的插件代号、输入参数 # observation是插件返回的结果,为字符串 observation = call_plugin(action, action_input) output += f'\nObservation: {observation}\nThought:' text += output else: # 生成结束,并且不再需要调用插件 text += output break new_history = [] new_history.extend(history) new_history.append({'user': prompt, 'bot': text}) return text, new_history # 将对话历史、插件信息聚合成一段初始文本 def build_input_text(chat_history, list_of_plugin_info) -> str: # 候选插件的详细信息 tools_text = [] for plugin_info in list_of_plugin_info: tool = TOOL_DESC.format( name_for_model=plugin_info["name_for_model"], name_for_human=plugin_info["name_for_human"], description_for_model=plugin_info["description_for_model"], parameters=json.dumps(plugin_info["parameters"], ensure_ascii=False), ) if plugin_info.get('args_format', 'json') == 'json': tool += " Format the arguments as a JSON object." elif plugin_info['args_format'] == 'code': tool += ' Enclose the code within triple backticks (`) at the beginning and end of the code.' else: raise NotImplementedError tools_text.append(tool) tools_text = '\n\n'.join(tools_text) # 候选插件的代号 tools_name_text = ', '.join([plugin_info["name_for_model"] for plugin_info in list_of_plugin_info]) im_start = '<|im_start|>' im_end = '<|im_end|>' prompt = f'{im_start}system\nYou are a helpful assistant.{im_end}' for i, (query, response) in enumerate(chat_history): if list_of_plugin_info: # 如果有候选插件 # 倒数第一轮或倒数第二轮对话填入详细的插件信息,但具体什么位置填可以自行判断 if (len(chat_history) == 1) or (i == len(chat_history) - 2): query = PROMPT_REACT.format( tools_text=tools_text, tools_name_text=tools_name_text, query=query, ) query = query.lstrip('\n').rstrip() # 重要!若不 strip 会与训练时数据的构造方式产生差异。 response = response.lstrip('\n').rstrip() # 重要!若不 strip 会与训练时数据的构造方式产生差异。 # 使用续写模式(text completion)时,需要用如下格式区分用户和AI: prompt += f"\n{im_start}user\n{query}{im_end}" prompt += f"\n{im_start}assistant\n{response}{im_end}" assert prompt.endswith(f"\n{im_start}assistant\n{im_end}") prompt = prompt[: -len(f'{im_end}')] return prompt def text_completion(input_text: str, stop_words) -> str: # 作为一个文本续写模型来使用 im_end = '<|im_end|>' if im_end not in stop_words: stop_words = stop_words + [im_end] stop_words_ids = [tokenizer.encode(w) for w in stop_words] # TODO: 增加流式输出的样例实现 input_ids = torch.tensor([tokenizer.encode(input_text)]).to(model.device) output = model.generate(input_ids, stop_words_ids=stop_words_ids) output = output.tolist()[0] output = tokenizer.decode(output, errors="ignore") assert output.startswith(input_text) output = output[len(input_text) :].replace('<|endoftext|>', '').replace(im_end, '') for stop_str in stop_words: idx = output.find(stop_str) if idx != -1: output = output[: idx + len(stop_str)] return output # 续写 input_text 的结果,不包含 input_text 的内容 def parse_latest_plugin_call(text): plugin_name, plugin_args = '', '' i = text.rfind('\nAction:') j = text.rfind('\nAction Input:') k = text.rfind('\nObservation:') if 0 <= i < j: # If the text has `Action` and `Action input`, if k < j: # but does not contain `Observation`, # then it is likely that `Observation` is ommited by the LLM, # because the output text may have discarded the stop word. text = text.rstrip() + '\nObservation:' # Add it back. k = text.rfind('\nObservation:') plugin_name = text[i + len('\nAction:') : j].strip() plugin_args = text[j + len('\nAction Input:') : k].strip() text = text[:k] return plugin_name, plugin_args, text # # 输入: # plugin_name: 需要调用的插件代号,对应 name_for_model。 # plugin_args:插件的输入参数,是一个 dict,dict 的 key、value 分别为参数名、参数值。 # 输出: # 插件的返回结果,需要是字符串。 # 即使原本是 JSON 输出,也请 json.dumps(..., ensure_ascii=False) 成字符串。 # def call_plugin(plugin_name: str, plugin_args: str) -> str: # # 请开发者自行完善这部分内容。这里的参考实现仅是 demo 用途,非生产用途。 # if plugin_name == 'google_search': # 使用 SerpAPI 需要在这里填入您的 SERPAPI_API_KEY! os.environ["SERPAPI_API_KEY"] = os.getenv("SERPAPI_API_KEY", default='') from langchain import SerpAPIWrapper return SerpAPIWrapper().run(json5.loads(plugin_args)['search_query']) elif plugin_name == 'image_gen': import urllib.parse prompt = json5.loads(plugin_args)["prompt"] prompt = urllib.parse.quote(prompt) return json.dumps({'image_url': f'https://image.pollinations.ai/prompt/{prompt}'}, ensure_ascii=False) else: raise NotImplementedError def test(): tools = [ { 'name_for_human': '谷歌搜索', 'name_for_model': 'google_search', 'description_for_model': '谷歌搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。', 'parameters': [ { 'name': 'search_query', 'description': '搜索关键词或短语', 'required': True, 'schema': {'type': 'string'}, } ], }, { 'name_for_human': '文生图', 'name_for_model': 'image_gen', 'description_for_model': '文生图是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL', 'parameters': [ { 'name': 'prompt', 'description': '英文关键词,描述了希望图像具有什么内容', 'required': True, 'schema': {'type': 'string'}, } ], }, ] history = [] for query in ['你好', '搜索一下谁是周杰伦', '再搜下他老婆是谁', '给我画个可爱的小猫吧,最好是黑猫']: print(f"User's Query:\n{query}\n") response, history = llm_with_plugin(prompt=query, history=history, list_of_plugin_info=tools) print(f"Qwen's Response:\n{response}\n") if __name__ == "__main__": test() """如果执行成功,在终端下应当能看到如下输出: User's Query: 你好 Qwen's Response: Thought: 提供的工具对回答该问题帮助较小,我将不使用工具直接作答。 Final Answer: 你好!很高兴见到你。有什么我可以帮忙的吗? User's Query: 搜索一下谁是周杰伦 Qwen's Response: Thought: 我应该使用Google搜索查找相关信息。 Action: google_search Action Input: {"search_query": "周杰伦"} Observation: Jay Chou is a Taiwanese singer, songwriter, record producer, rapper, actor, television personality, and businessman. Thought: I now know the final answer. Final Answer: 周杰伦(Jay Chou)是一位来自台湾的歌手、词曲创作人、音乐制作人、说唱歌手、演员、电视节目主持人和企业家。他以其独特的音乐风格和才华在华语乐坛享有很高的声誉。 User's Query: 再搜下他老婆是谁 Qwen's Response: Thought: 我应该使用Google搜索查找相关信息。 Action: google_search Action Input: {"search_query": "周杰伦 老婆"} Observation: Hannah Quinlivan Thought: I now know the final answer. Final Answer: 周杰伦的老婆是Hannah Quinlivan,她是一位澳大利亚籍的模特和演员。两人于2015年结婚,并育有一子。 User's Query: 给我画个可爱的小猫吧,最好是黑猫 Qwen's Response: Thought: 我应该使用文生图API来生成一张可爱的小猫图片。 Action: image_gen Action Input: {"prompt": "cute black cat"} Observation: {"image_url": "https://image.pollinations.ai/prompt/cute%20black%20cat"} Thought: I now know the final answer. Final Answer: 生成的可爱小猫图片的URL为https://image.pollinations.ai/prompt/cute%20black%20cat。你可以点击这个链接查看图片。 """