import os from typing import List import argparse import torch import pandas as pd import numpy as np from tqdm import tqdm from transformers.trainer_utils import set_seed from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig ''' wget https://huggingface.co/datasets/ceval/ceval-exam/resolve/main/ceval-exam.zip mkdir data/ceval mv ceval-exam.zip data/ceval cd data/ceval; unzip ceval-exam.zip cd ../../ python evaluate_ceval.py -d data/ceval/ ''' def load_models_tokenizer(args): tokenizer = AutoTokenizer.from_pretrained( args.checkpoint_path, pad_token='<|extra_0|>', eos_token='<|endoftext|>', padding_side='left', trust_remote_code=True ) model = AutoModelForCausalLM.from_pretrained( args.checkpoint_path, pad_token_id=tokenizer.pad_token_id, device_map="auto", trust_remote_code=True ).eval() model.generation_config = GenerationConfig.from_pretrained( args.checkpoint_path, pad_token_id=tokenizer.pad_token_id, trust_remote_code=True ) return model, tokenizer def format_example(line, include_answer=True): example = "问题:" + line["question"] for choice in choices: example += f'\n{choice}. {line[f"{choice}"]}' if include_answer: example += "\n答案:" + line["answer"] + "\n\n" else: example += "\n答案:" return example def generate_few_shot_prompt(k, subject, dev_df): prompt = "" if k == -1: k = dev_df.shape[0] for i in range(k): prompt += format_example( dev_df.iloc[i, :], include_answer=True, ) return prompt def get_logits(tokenizer, model, inputs: List[str]): input_ids = tokenizer(inputs, padding='longest')["input_ids"] input_ids = torch.tensor(input_ids, device=model.device) tokens = {"input_ids": input_ids} attention_mask = input_ids.ne(tokenizer.pad_token_id) outputs = model(input_ids, attention_mask=attention_mask)["logits"] logits = outputs[:, -1, :] log_probs = torch.nn.functional.softmax(logits, dim=-1) return log_probs, {"tokens": tokens} @torch.no_grad() def eval_subject( model, tokenizer, subject_name, test_df, k=5, dev_df=None, few_shot=False, save_result_dir=None, batch_size=1, **kwargs, ): result = [] score = [] few_shot_prompt = ( generate_few_shot_prompt(k, subject_name, dev_df) if few_shot else "" ) all_probs = {"prob_A": [], "prob_B": [], "prob_C": [], "prob_D": []} if args.debug: print(f"few_shot_prompt: {few_shot_prompt}") choices_ids = torch.tensor( tokenizer("A")["input_ids"] + tokenizer("B")["input_ids"] + tokenizer("C")["input_ids"] + tokenizer("D")["input_ids"] ).unsqueeze(0).to(model.device) idx_list = list(range(0, len(test_df), batch_size)) for i in tqdm(idx_list): full_prompt_list = [] answer_list = [] for row in test_df.iloc[i:i+batch_size].to_dict(orient='records'): question = format_example(row, include_answer=False) full_prompt = few_shot_prompt + question full_prompt_list.append(full_prompt) if 'answer' in row: answer_list.append(row['answer']) logits, input_info = get_logits(tokenizer, model, full_prompt_list) softval = logits.gather(1, choices_ids.expand(logits.size(0), -1)).softmax(1) if softval.dtype in {torch.bfloat16, torch.float16}: softval = softval.to(dtype=torch.float32) probs = softval.detach().cpu().numpy() for i in range(len(probs)): for j, choice in enumerate(choices): all_probs[f"prob_{choice}"].append(probs[i][j]) pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs[i])] if answer_list != []: correct = 1 if pred == answer_list[i] else 0 score.append(correct) if args.debug: print(f'{question} pred: {pred} ref: {answer_list[i]}') result.append(pred) if score: correct_ratio = 100 * sum(score) / len(score) if args.debug: print(subject_name, correct_ratio) else: correct_ratio = 0 if save_result_dir: test_df["model_output"] = result for i, choice in enumerate(choices): test_df[f"prob_{choice}"] = all_probs[f"prob_{choice}"] if score: test_df["correctness"] = score os.makedirs(save_result_dir, exist_ok=True) test_df.to_csv( os.path.join(save_result_dir, f"{subject_name}_result.csv"), encoding="utf-8", index=False, ) return correct_ratio def cal_ceval(res): acc_sum_dict = dict() acc_norm_sum_dict = dict() cnt_dict = dict() acc_sum = 0.0 cnt = 0 hard_cnt = 0 hard_acc_sum = 0.0 for tt in res.keys(): name = tt.split("-")[-1] acc_sum += float(res[tt]) cnt += 1 class_ = TASK_NAME_MAPPING[name][2] if class_ not in acc_sum_dict: acc_sum_dict[class_] = 0.0 acc_norm_sum_dict[class_] = 0.0 cnt_dict[class_] = 0.0 if name in hard_list: hard_cnt += 1 hard_acc_sum += float(res[tt]) acc_sum_dict[class_] += float(res[tt]) cnt_dict[class_] += 1 print("\n\n\n") for k in ["STEM", "Social Science", "Humanities", "Other"]: if k in cnt_dict: print("%s acc: %.2f " % (k, acc_sum_dict[k] / cnt_dict[k])) if hard_cnt > 0: print("Hard acc:%.2f " % (hard_acc_sum / hard_cnt)) print("AVERAGE acc:%.2f " % (acc_sum / cnt)) TASK_NAME_MAPPING = { "computer_network": ["Computer Network", "\u8ba1\u7b97\u673a\u7f51\u7edc", "STEM"], "operating_system": ["Operating System", "\u64cd\u4f5c\u7cfb\u7edf", "STEM"], "computer_architecture": [ "Computer Architecture", "\u8ba1\u7b97\u673a\u7ec4\u6210", "STEM", ], "college_programming": ["College Programming", "\u5927\u5b66\u7f16\u7a0b", "STEM"], "college_physics": ["College Physics", "\u5927\u5b66\u7269\u7406", "STEM"], "college_chemistry": ["College Chemistry", "\u5927\u5b66\u5316\u5b66", "STEM"], "advanced_mathematics": [ "Advanced Mathematics", "\u9ad8\u7b49\u6570\u5b66", "STEM", ], "probability_and_statistics": [ "Probability and Statistics", "\u6982\u7387\u7edf\u8ba1", "STEM", ], "discrete_mathematics": [ "Discrete Mathematics", "\u79bb\u6563\u6570\u5b66", "STEM", ], "electrical_engineer": [ "Electrical Engineer", "\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08", "STEM", ], "metrology_engineer": [ "Metrology Engineer", "\u6ce8\u518c\u8ba1\u91cf\u5e08", "STEM", ], "high_school_mathematics": [ "High School Mathematics", "\u9ad8\u4e2d\u6570\u5b66", "STEM", ], "high_school_physics": ["High School Physics", "\u9ad8\u4e2d\u7269\u7406", "STEM"], "high_school_chemistry": [ "High School Chemistry", "\u9ad8\u4e2d\u5316\u5b66", "STEM", ], "high_school_biology": ["High School Biology", "\u9ad8\u4e2d\u751f\u7269", "STEM"], "middle_school_mathematics": [ "Middle School Mathematics", "\u521d\u4e2d\u6570\u5b66", "STEM", ], "middle_school_biology": [ "Middle School Biology", "\u521d\u4e2d\u751f\u7269", "STEM", ], "middle_school_physics": [ "Middle School Physics", "\u521d\u4e2d\u7269\u7406", "STEM", ], "middle_school_chemistry": [ "Middle School Chemistry", "\u521d\u4e2d\u5316\u5b66", "STEM", ], "veterinary_medicine": ["Veterinary Medicine", "\u517d\u533b\u5b66", "STEM"], "college_economics": [ "College Economics", "\u5927\u5b66\u7ecf\u6d4e\u5b66", "Social Science", ], "business_administration": [ "Business Administration", "\u5de5\u5546\u7ba1\u7406", "Social Science", ], "marxism": [ "Marxism", "\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406", "Social Science", ], "mao_zedong_thought": [ "Mao Zedong Thought", "\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba", "Social Science", ], "education_science": ["Education Science", "\u6559\u80b2\u5b66", "Social Science"], "teacher_qualification": [ "Teacher Qualification", "\u6559\u5e08\u8d44\u683c", "Social Science", ], "high_school_politics": [ "High School Politics", "\u9ad8\u4e2d\u653f\u6cbb", "Social Science", ], "high_school_geography": [ "High School Geography", "\u9ad8\u4e2d\u5730\u7406", "Social Science", ], "middle_school_politics": [ "Middle School Politics", "\u521d\u4e2d\u653f\u6cbb", "Social Science", ], "middle_school_geography": [ "Middle School Geography", "\u521d\u4e2d\u5730\u7406", "Social Science", ], "modern_chinese_history": [ "Modern Chinese History", "\u8fd1\u4ee3\u53f2\u7eb2\u8981", "Humanities", ], "ideological_and_moral_cultivation": [ "Ideological and Moral Cultivation", "\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840", "Humanities", ], "logic": ["Logic", "\u903b\u8f91\u5b66", "Humanities"], "law": ["Law", "\u6cd5\u5b66", "Humanities"], "chinese_language_and_literature": [ "Chinese Language and Literature", "\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66", "Humanities", ], "art_studies": ["Art Studies", "\u827a\u672f\u5b66", "Humanities"], "professional_tour_guide": [ "Professional Tour Guide", "\u5bfc\u6e38\u8d44\u683c", "Humanities", ], "legal_professional": [ "Legal Professional", "\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c", "Humanities", ], "high_school_chinese": [ "High School Chinese", "\u9ad8\u4e2d\u8bed\u6587", "Humanities", ], "high_school_history": [ "High School History", "\u9ad8\u4e2d\u5386\u53f2", "Humanities", ], "middle_school_history": [ "Middle School History", "\u521d\u4e2d\u5386\u53f2", "Humanities", ], "civil_servant": ["Civil Servant", "\u516c\u52a1\u5458", "Other"], "sports_science": ["Sports Science", "\u4f53\u80b2\u5b66", "Other"], "plant_protection": ["Plant Protection", "\u690d\u7269\u4fdd\u62a4", "Other"], "basic_medicine": ["Basic Medicine", "\u57fa\u7840\u533b\u5b66", "Other"], "clinical_medicine": ["Clinical Medicine", "\u4e34\u5e8a\u533b\u5b66", "Other"], "urban_and_rural_planner": [ "Urban and Rural Planner", "\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08", "Other", ], "accountant": ["Accountant", "\u6ce8\u518c\u4f1a\u8ba1\u5e08", "Other"], "fire_engineer": [ "Fire Engineer", "\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08", "Other", ], "environmental_impact_assessment_engineer": [ "Environmental Impact Assessment Engineer", "\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08", "Other", ], "tax_accountant": ["Tax Accountant", "\u7a0e\u52a1\u5e08", "Other"], "physician": ["Physician", "\u533b\u5e08\u8d44\u683c", "Other"], } hard_list = [ "advanced_mathematics", "discrete_mathematics", "probability_and_statistics", "college_physics", "college_chemistry", "high_school_mathematics", "high_school_physics", "high_school_chemistry", ] choices = ["A", "B", "C", "D"] def main(args): model, tokenizer = load_models_tokenizer(args) dev_result = {} for subject_name in tqdm(TASK_NAME_MAPPING.keys()): val_file_path = os.path.join( args.eval_data_path, "val", f"{subject_name}_val.csv" ) dev_file_path = os.path.join( args.eval_data_path, "dev", f"{subject_name}_dev.csv" ) # test_file_path = os.path.join(args.eval_data_path, 'test', f'{subject_name}_test.csv') val_df = pd.read_csv(val_file_path) dev_df = pd.read_csv(dev_file_path) # test_df = pd.read_csv(test_file_path) score = eval_subject( model, tokenizer, subject_name, val_df, dev_df=dev_df, k=5, few_shot=True, save_result_dir=f"outs/ceval_eval_result", batch_size=args.batch_size ) dev_result[subject_name] = score cal_ceval(dev_result) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Test HF checkpoint.") parser.add_argument( "-c", "--checkpoint-path", type=str, help="Checkpoint path", default="Qwen/Qwen-7B", ) parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed") # Provide extra arguments required for tasks group = parser.add_argument_group(title="Evaluation options") group.add_argument( "-d", "--eval_data_path", type=str, required=True, help="Path to eval data" ) group.add_argument( "--max-seq-len", type=int, default=2048, help="Size of the output generated text.", ) group.add_argument( "--debug", action="store_true", default=False, help="Print infos." ) group.add_argument( "--batch-size", type=int, default=1, help="batch size", ) args = parser.parse_args() set_seed(args.seed) main(args)