# This code is based on the revised code from fastchat based on tatsu-lab/stanford_alpaca. from dataclasses import dataclass, field import json import math import logging import os from typing import Dict, Optional, List import torch from torch.utils.data import Dataset from deepspeed import zero from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus import transformers from transformers import Trainer, GPTQConfig, deepspeed from transformers.trainer_pt_utils import LabelSmoother from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training IGNORE_TOKEN_ID = LabelSmoother.ignore_index @dataclass class ModelArguments: model_name_or_path: Optional[str] = field(default="Qwen/Qwen-7B") @dataclass class DataArguments: data_path: str = field( default=None, metadata={"help": "Path to the training data."} ) eval_data_path: str = field( default=None, metadata={"help": "Path to the evaluation data."} ) lazy_preprocess: bool = False @dataclass class TrainingArguments(transformers.TrainingArguments): cache_dir: Optional[str] = field(default=None) optim: str = field(default="adamw_torch") model_max_length: int = field( default=8192, metadata={ "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." }, ) use_lora: bool = False @dataclass class LoraArguments: lora_r: int = 64 lora_alpha: int = 16 lora_dropout: float = 0.05 lora_target_modules: List[str] = field( default_factory=lambda: ["c_attn", "c_proj", "w1", "w2"] ) lora_weight_path: str = "" lora_bias: str = "none" q_lora: bool = False def maybe_zero_3(param): if hasattr(param, "ds_id"): assert param.ds_status == ZeroParamStatus.NOT_AVAILABLE with zero.GatheredParameters([param]): param = param.data.detach().cpu().clone() else: param = param.detach().cpu().clone() return param # Borrowed from peft.utils.get_peft_model_state_dict def get_peft_state_maybe_zero_3(named_params, bias): if bias == "none": to_return = {k: t for k, t in named_params if "lora_" in k} elif bias == "all": to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} elif bias == "lora_only": to_return = {} maybe_lora_bias = {} lora_bias_names = set() for k, t in named_params: if "lora_" in k: to_return[k] = t bias_name = k.split("lora_")[0] + "bias" lora_bias_names.add(bias_name) elif "bias" in k: maybe_lora_bias[k] = t for k, t in maybe_lora_bias: if bias_name in lora_bias_names: to_return[bias_name] = t else: raise NotImplementedError to_return = {k: maybe_zero_3(v) for k, v in to_return.items()} return to_return local_rank = None def rank0_print(*args): if local_rank == 0: print(*args) def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str, bias="none"): """Collects the state dict and dump to disk.""" # check if zero3 mode enabled if deepspeed.is_deepspeed_zero3_enabled(): state_dict = trainer.model_wrapped._zero3_consolidated_16bit_state_dict() else: if trainer.args.use_lora: state_dict = get_peft_state_maybe_zero_3( trainer.model.named_parameters(), bias ) else: state_dict = trainer.model.state_dict() if trainer.args.should_save and trainer.args.local_rank == 0: trainer._save(output_dir, state_dict=state_dict) def preprocess( sources, tokenizer: transformers.PreTrainedTokenizer, max_len: int, system_message: str = "You are a helpful assistant." ) -> Dict: roles = {"user": "<|im_start|>user", "assistant": "<|im_start|>assistant"} im_start = tokenizer.im_start_id im_end = tokenizer.im_end_id nl_tokens = tokenizer('\n').input_ids _system = tokenizer('system').input_ids + nl_tokens _user = tokenizer('user').input_ids + nl_tokens _assistant = tokenizer('assistant').input_ids + nl_tokens # Apply prompt templates input_ids, targets = [], [] for i, source in enumerate(sources): if roles[source[0]["from"]] != roles["user"]: source = source[1:] input_id, target = [], [] system = [im_start] + _system + tokenizer(system_message).input_ids + [im_end] + nl_tokens input_id += system target += [im_start] + [IGNORE_TOKEN_ID] * (len(system)-3) + [im_end] + nl_tokens assert len(input_id) == len(target) for j, sentence in enumerate(source): role = roles[sentence["from"]] _input_id = tokenizer(role).input_ids + nl_tokens + \ tokenizer(sentence["value"]).input_ids + [im_end] + nl_tokens input_id += _input_id if role == '<|im_start|>user': _target = [im_start] + [IGNORE_TOKEN_ID] * (len(_input_id)-3) + [im_end] + nl_tokens elif role == '<|im_start|>assistant': _target = [im_start] + [IGNORE_TOKEN_ID] * len(tokenizer(role).input_ids) + \ _input_id[len(tokenizer(role).input_ids)+1:-2] + [im_end] + nl_tokens else: raise NotImplementedError target += _target assert len(input_id) == len(target) input_id += [tokenizer.pad_token_id] * (max_len - len(input_id)) target += [IGNORE_TOKEN_ID] * (max_len - len(target)) input_ids.append(input_id[:max_len]) targets.append(target[:max_len]) input_ids = torch.tensor(input_ids, dtype=torch.int) targets = torch.tensor(targets, dtype=torch.int) return dict( input_ids=input_ids, labels=targets, attention_mask=input_ids.ne(tokenizer.pad_token_id), ) class SupervisedDataset(Dataset): """Dataset for supervised fine-tuning.""" def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer, max_len: int): super(SupervisedDataset, self).__init__() rank0_print("Formatting inputs...") sources = [example["conversations"] for example in raw_data] data_dict = preprocess(sources, tokenizer, max_len) self.input_ids = data_dict["input_ids"] self.labels = data_dict["labels"] self.attention_mask = data_dict["attention_mask"] def __len__(self): return len(self.input_ids) def __getitem__(self, i) -> Dict[str, torch.Tensor]: return dict( input_ids=self.input_ids[i], labels=self.labels[i], attention_mask=self.attention_mask[i], ) class LazySupervisedDataset(Dataset): """Dataset for supervised fine-tuning.""" def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer, max_len: int): super(LazySupervisedDataset, self).__init__() self.tokenizer = tokenizer self.max_len = max_len rank0_print("Formatting inputs...Skip in lazy mode") self.tokenizer = tokenizer self.raw_data = raw_data self.cached_data_dict = {} def __len__(self): return len(self.raw_data) def __getitem__(self, i) -> Dict[str, torch.Tensor]: if i in self.cached_data_dict: return self.cached_data_dict[i] ret = preprocess([self.raw_data[i]["conversations"]], self.tokenizer, self.max_len) ret = dict( input_ids=ret["input_ids"][0], labels=ret["labels"][0], attention_mask=ret["attention_mask"][0], ) self.cached_data_dict[i] = ret return ret def make_supervised_data_module( tokenizer: transformers.PreTrainedTokenizer, data_args, max_len, ) -> Dict: """Make dataset and collator for supervised fine-tuning.""" dataset_cls = ( LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset ) rank0_print("Loading data...") train_json = json.load(open(data_args.data_path, "r")) train_dataset = dataset_cls(train_json, tokenizer=tokenizer, max_len=max_len) if data_args.eval_data_path: eval_json = json.load(open(data_args.eval_data_path, "r")) eval_dataset = dataset_cls(eval_json, tokenizer=tokenizer, max_len=max_len) else: eval_dataset = None return dict(train_dataset=train_dataset, eval_dataset=eval_dataset) def train(): global local_rank parser = transformers.HfArgumentParser( (ModelArguments, DataArguments, TrainingArguments, LoraArguments) ) ( model_args, data_args, training_args, lora_args, ) = parser.parse_args_into_dataclasses() compute_dtype = ( torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32) ) local_rank = training_args.local_rank device_map = None world_size = int(os.environ.get("WORLD_SIZE", 1)) ddp = world_size != 1 if lora_args.q_lora: device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else None if len(training_args.fsdp) > 0 or deepspeed.is_deepspeed_zero3_enabled(): logging.warning( "FSDP or ZeRO3 are not incompatible with QLoRA." ) # Set RoPE scaling factor config = transformers.AutoConfig.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, trust_remote_code=True, ) config.use_cache = False # Load model and tokenizer model = transformers.AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, config=config, cache_dir=training_args.cache_dir, device_map=device_map, trust_remote_code=True, quantization_config=GPTQConfig( bits=4, disable_exllama=True ) if training_args.use_lora and lora_args.q_lora else None, ) tokenizer = transformers.AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, model_max_length=training_args.model_max_length, padding_side="right", use_fast=False, trust_remote_code=True, ) tokenizer.pad_token_id = tokenizer.eod_id if training_args.use_lora: lora_config = LoraConfig( r=lora_args.lora_r, lora_alpha=lora_args.lora_alpha, target_modules=lora_args.lora_target_modules, lora_dropout=lora_args.lora_dropout, bias=lora_args.lora_bias, task_type="CAUSAL_LM", modules_to_save=["wte", "lm_head"] # This argument serves for adding new tokens. ) if lora_args.q_lora: model = prepare_model_for_kbit_training( model, use_gradient_checkpointing=training_args.gradient_checkpointing ) model = get_peft_model(model, lora_config) if training_args.gradient_checkpointing: model.enable_input_require_grads() # Load data data_module = make_supervised_data_module( tokenizer=tokenizer, data_args=data_args, max_len=training_args.model_max_length ) # Start trainner trainer = Trainer( model=model, tokenizer=tokenizer, args=training_args, **data_module ) trainer.train() trainer.save_state() safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir, bias=lora_args.lora_bias) if __name__ == "__main__": train()