#!/bin/bash export CUDA_DEVICE_MAX_CONNECTIONS=1 DIR=`pwd` # Guide: # This script supports distributed training on multi-gpu workers (as well as single-worker training). # Please set the options below according to the comments. # For multi-gpu workers training, these options should be manually set for each worker. # After setting the options, please run the script on each worker. # Number of GPUs per GPU worker GPUS_PER_NODE=$(python -c 'import torch; print(torch.cuda.device_count())') # Number of GPU workers, for single-worker training, please set to 1 NNODES=${NNODES:-1} # The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0 NODE_RANK=${NODE_RANK:-0} # The ip address of the rank-0 worker, for single-worker training, please set to localhost MASTER_ADDR=${MASTER_ADDR:-localhost} # The port for communication MASTER_PORT=${MASTER_PORT:-6001} MODEL="Qwen/Qwen-7B" # Set the path if you do not want to load from huggingface directly # ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations. # See the section for finetuning in README for more information. DATA="path_to_data" function usage() { echo ' Usage: bash finetune/finetune_ds.sh [-m MODEL_PATH] [-d DATA_PATH] ' } while [[ "$1" != "" ]]; do case $1 in -m | --model ) shift MODEL=$1 ;; -d | --data ) shift DATA=$1 ;; -h | --help ) usage exit 0 ;; * ) echo "Unknown argument ${1}" exit 1 ;; esac shift done DISTRIBUTED_ARGS=" --nproc_per_node $GPUS_PER_NODE \ --nnodes $NNODES \ --node_rank $NODE_RANK \ --master_addr $MASTER_ADDR \ --master_port $MASTER_PORT " torchrun $DISTRIBUTED_ARGS finetune.py \ --model_name_or_path $MODEL \ --data_path $DATA \ --bf16 True \ --output_dir output_qwen \ --num_train_epochs 5 \ --per_device_train_batch_size 1 \ --per_device_eval_batch_size 1 \ --gradient_accumulation_steps 16 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 1000 \ --save_total_limit 10 \ --learning_rate 1e-5 \ --weight_decay 0.1 \ --adam_beta2 0.95 \ --warmup_ratio 0.01 \ --lr_scheduler_type "cosine" \ --logging_steps 1 \ --report_to "none" \ --model_max_length 512 \ --gradient_checkpointing True \ --lazy_preprocess True \ --deepspeed finetune/ds_config_zero3.json