import argparse import tqdm import torch import jsonlines from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig """ git clone https://github.com/openai/human-eval $ pip install -e human-eval evaluate_functional_correctness sample-output-file """ def decode(tokens_list, tokenizer, raw_text_len): sents = [] # print(len(tokens_list)) for tokens in tokens_list: tokens = tokens.cpu().numpy().tolist() sent = tokenizer.tokenizer.decode(tokens[raw_text_len:]) sent = sent.split("<|endoftext|>")[0] sent = sent.split("\n\n\n")[0] sent = sent.split("\n\n")[0] sent = sent.split("def ")[0] sents.append(sent) return sents def generate_sample(model, tokenizer, input_txt): input_ids = tokenizer.tokenizer.encode(input_txt) raw_text_len = len(input_ids) context_enc = torch.tensor([input_ids]).to(model.device) print(f"Input text: {input_txt}\n") outputs = model.generate(context_enc) output_text = decode(outputs, tokenizer, raw_text_len)[0] print(f"\nOutput text: \n{output_text}\n") return output_text if __name__ == "__main__": parser = argparse.ArgumentParser(description="Test HF checkpoint.") parser.add_argument( "-c", "--checkpoint-path", type=str, help="Checkpoint path", default="Qwen/Qwen-7B", ) parser.add_argument( "-f", "--sample-input-file", type=str, default=None, help="data path to HumanEval.jsonl", ) parser.add_argument( "-o", "--sample-output-file", type=str, default="HumanEval_res.jsonl" ) args = parser.parse_args() print("Loading tokenizer ...") tokenizer = AutoTokenizer.from_pretrained( args.checkpoint_path, trust_remote_code=True ) print("Loading model ...") model = AutoModelForCausalLM.from_pretrained( args.checkpoint_path, device_map="auto", trust_remote_code=True ).eval() model.generation_config = GenerationConfig.from_pretrained( args.checkpoint_path, trust_remote_code=True ) model.generation_config.do_sample = False f_output = jsonlines.Writer(open(args.sample_output_file, "w", encoding="utf-8")) f = jsonlines.open(args.sample_input_file) with f_output as output: for jobj in tqdm.tqdm(f, desc="task_idx"): prompt = jobj["prompt"] task_id = jobj["task_id"] gen_sents = generate_sample(model, tokenizer, prompt) gen_jobjs = {"task_id": task_id, "completion": gen_sents} output.write(gen_jobjs) f_output.close()