|
|
|
@ -80,7 +80,7 @@ def eval_subject(
|
|
|
|
|
score = []
|
|
|
|
|
|
|
|
|
|
few_shot_prompt = generate_few_shot_prompt(
|
|
|
|
|
k, subject_name, dev_df) if few_shot else []
|
|
|
|
|
k, subject_name, dev_df) if few_shot else ''
|
|
|
|
|
all_probs = {'prob_A': [], 'prob_B': [], 'prob_C': [], 'prob_D': []}
|
|
|
|
|
if args.debug: print(f"few_shot_prompt: {few_shot_prompt}")
|
|
|
|
|
|
|
|
|
@ -95,10 +95,10 @@ def eval_subject(
|
|
|
|
|
softval = torch.nn.functional.softmax(
|
|
|
|
|
torch.tensor(
|
|
|
|
|
[
|
|
|
|
|
logits[tokenizer("A")['input_ids']],
|
|
|
|
|
logits[tokenizer("B")['input_ids']],
|
|
|
|
|
logits[tokenizer("C")['input_ids']],
|
|
|
|
|
logits[tokenizer("D")['input_ids']],
|
|
|
|
|
logits[tokenizer("A")['input_ids'][-1]],
|
|
|
|
|
logits[tokenizer("B")['input_ids'][-1]],
|
|
|
|
|
logits[tokenizer("C")['input_ids'][-1]],
|
|
|
|
|
logits[tokenizer("D")['input_ids'][-1]],
|
|
|
|
|
]
|
|
|
|
|
),
|
|
|
|
|
dim=0,
|
|
|
|
|