@ -791,10 +791,15 @@ For deployment and fast inference, we suggest using vLLM.
If you use cuda 12.1 and pytorch 2.1, you can directly use the following command to install vLLM.
```bash
pip install vllm
# pip install vllm # This line is faster but it does not support quantization models.
# The below lines support int4 quantization (int8 will be supported soon). The installation are slower (~10 minutes).
git clone https://github.com/QwenLM/vllm-gptq
cd vllm-gptq
pip install -e .
```
Otherwise, please refer to the official vLLM [Installation Instructions](https://docs.vllm.ai/en/latest/getting_started/installation.html).
Otherwise, please refer to the official vLLM [Installation Instructions](https://docs.vllm.ai/en/latest/getting_started/installation.html), or our [vLLM repo for GPTQ quantization](https://github.com/QwenLM/vllm-gptq).
#### vLLM + Transformer-like Wrapper
@ -804,6 +809,7 @@ You can download the [wrapper codes](examples/vllm_wrapper.py) and execute the f
from vllm_wrapper import vLLMWrapper
model = vLLMWrapper('Qwen/Qwen-7B-Chat', tensor_parallel_size=1)
# model = vLLMWrapper('Qwen/Qwen-7B-Chat-Int4', tensor_parallel_size=1, dtype="float16")
response, history = model.chat(query="你好", history=None)
# python -m fastchat.serve.vllm_worker --model-path $model_path --trust-remote-code --dtype float16 # run int4 model
```
However, if you hope to run the model on multiple GPUs for faster inference or larger memory, you can use tensor parallelism supported by vLLM. Suppose you run the model on 4 GPUs, the command is shown below: