From 837826515803193377728a387e017911f79690d1 Mon Sep 17 00:00:00 2001 From: Yang An Date: Thu, 3 Aug 2023 17:22:33 +0800 Subject: [PATCH] Update README_CN.md --- README_CN.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README_CN.md b/README_CN.md index 67398ec..b5fa2cb 100644 --- a/README_CN.md +++ b/README_CN.md @@ -20,7 +20,7 @@ 1. **大规模高质量预训练数据**:我们使用了超过2.2万亿token的自建大规模预训练数据集进行语言模型的预训练。数据集包括文本和代码等多种数据类型,覆盖通用领域和专业领域。 2. **优秀的模型性能**:相比同规模的开源模型,Qwen-7B在多个评测数据集上具有显著优势,甚至超出12-13B等更大规模的模型。评测评估的能力范围包括自然语言理解与生成、数学运算解题、代码生成等。 -3. **更好地支持多语言**:基于更大词表的分词器在分词上更高效,同时它对其他语言表现更加友好。用户可以在`Qwen-7B`的基础上更方便地训练特定语言的7B语言模型。 +3. **更好地支持多语言**:基于更大词表的分词器在分词上更高效,同时它对其他语言表现更加友好。用户可以在Qwen-7B的基础上更方便地训练特定语言的7B语言模型。 4. **8K的上下文长度**:Qwen-7B及Qwen-7B-Chat均能支持8K的上下文长度, 允许用户输入更长的prompt。 5. **支持插件调用**:Qwen-7B-Chat针对插件调用相关的对齐数据做了特定优化,当前模型能有效调用插件以及升级为Agent。