diff --git a/.github/ISSUE_TEMPLATE/bug_report.yaml b/.github/ISSUE_TEMPLATE/bug_report.yaml
new file mode 100644
index 0000000..49b095c
--- /dev/null
+++ b/.github/ISSUE_TEMPLATE/bug_report.yaml
@@ -0,0 +1,63 @@
+name: 🐞 Bug
+description: File a bug/issue
+title: "[BUG] <title>"
+labels: ["Bug"]
+body:
+  - type: checkboxes
+    attributes:
+      label: Is there an existing issue for this?
+      description: Please search to see if an issue already exists for the bug you encountered.
+      options:
+        - label: I have searched the existing issues
+          required: true
+  - type: textarea
+    attributes:
+      label: Current Behavior
+      description: A concise description of what you're experiencing.
+    validations:
+      required: false
+  - type: textarea
+    attributes:
+      label: Expected Behavior
+      description: A concise description of what you expected to happen.
+    validations:
+      required: false
+  - type: textarea
+    attributes:
+      label: Steps To Reproduce
+      description: Steps to reproduce the behavior.
+      placeholder: |
+        1. In this environment...
+        1. With this config...
+        1. Run '...'
+        1. See error...
+    validations:
+      required: false
+  - type: textarea
+    attributes:
+      label: Environment
+      description: |
+        examples:
+          - **OS**: Ubuntu 20.04
+          - **Python**: 3.8
+          - **Transformers**: 4.31.0
+          - **PyTorch**: 2.0.1
+          - **CUDA**: 11.4
+      value: |
+        - OS:
+        - Python:
+        - Transformers:
+        - PyTorch:
+        - CUDA (`python -c 'import torch; print(torch.version.cuda)'`):
+      render: Markdown
+    validations:
+      required: false
+  - type: textarea
+    attributes:
+      label: Anything else?
+      description: |
+        Links? References? Anything that will give us more context about the issue you are encountering!
+        
+        Tip: You can attach images or log files by clicking this area to highlight it and then dragging files in.
+    validations:
+      required: false
diff --git a/.github/ISSUE_TEMPLATE/config.yaml b/.github/ISSUE_TEMPLATE/config.yaml
new file mode 100644
index 0000000..0086358
--- /dev/null
+++ b/.github/ISSUE_TEMPLATE/config.yaml
@@ -0,0 +1 @@
+blank_issues_enabled: true
diff --git a/.github/ISSUE_TEMPLATE/feature_request.yaml b/.github/ISSUE_TEMPLATE/feature_request.yaml
new file mode 100644
index 0000000..9951fde
--- /dev/null
+++ b/.github/ISSUE_TEMPLATE/feature_request.yaml
@@ -0,0 +1,63 @@
+name: "💡 Feature Request"
+description: Create a new ticket for a new feature request
+title: "💡 [REQUEST] - <title>"
+labels: [
+  "question"
+]
+body:
+  - type: input
+    id: start_date
+    attributes:
+      label: "Start Date"
+      description: Start of development
+      placeholder: "month/day/year"
+    validations:
+      required: false
+  - type: textarea
+    id: implementation_pr
+    attributes:
+      label: "Implementation PR"
+      description: Pull request used
+      placeholder: "#Pull Request ID"
+    validations:
+      required: false
+  - type: textarea
+    id: reference_issues
+    attributes:
+      label: "Reference Issues"
+      description: Common issues
+      placeholder: "#Issues IDs"
+    validations:
+      required: false
+  - type: textarea
+    id: summary
+    attributes:
+      label: "Summary"
+      description: Provide a brief explanation of the feature
+      placeholder: Describe in a few lines your feature request
+    validations:
+      required: true
+  - type: textarea
+    id: basic_example
+    attributes:
+      label: "Basic Example"
+      description: Indicate here some basic examples of your feature.
+      placeholder: A few specific words about your feature request.
+    validations:
+      required: true
+  - type: textarea
+    id: drawbacks
+    attributes:
+      label: "Drawbacks"
+      description: What are the drawbacks/impacts of your feature request ?
+      placeholder: Identify the drawbacks and impacts while being neutral on your feature request
+    validations:
+      required: true
+  - type: textarea
+    id: unresolved_question
+    attributes:
+      label: "Unresolved questions"
+      description: What questions still remain unresolved ?
+      placeholder: Identify any unresolved issues.
+    validations:
+      required: false
\ No newline at end of file
diff --git a/README.md b/README.md
index 6b221f3..0f6d10e 100644
--- a/README.md
+++ b/README.md
@@ -52,11 +52,17 @@ In general, Qwen-7B outperforms the baseline models of a similar model size, and
 
 For more experimental results (detailed model performance on more benchmark datasets) and details, please refer to our technical memo by clicking [here](techmemo-draft.md).
 
+## Requirements
+
+* python 3.8 and above
+* pytorch 1.12 and above, 2.0 and above are recommended
+* CUDA 11.4 and above are recommended (this is for GPU users, flash-attention users, etc.)
+
 ## Quickstart
 
 Below, we provide simple examples to show how to use Qwen-7B with 🤖 ModelScope and 🤗 Transformers.
 
-Before running the code, make sure you have setup the environment and installed the required packages. Make sure the pytorch version is higher than `1.12`, and then install the dependent libraries.
+Before running the code, make sure you have setup the environment and installed the required packages. Make sure you meet the above requirements, and then install the dependent libraries.
 
 ```bash
 pip install -r requirements.txt
@@ -84,18 +90,18 @@ from transformers.generation import GenerationConfig
 # Note: For tokenizer usage, please refer to examples/tokenizer_showcase.ipynb. 
 # The default behavior now has injection attack prevention off.
 tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
-# We recommend checking the support of BF16 first. Run the command below:
-# import torch
-# torch.cuda.is_bf16_supported()
+
 # use bf16
 # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()
 # use fp16
 # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval()
 # use cpu only
 # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="cpu", trust_remote_code=True).eval()
-# use fp32
+# use auto mode, automatically select precision based on the device.
 model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True).eval()
-model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
+
+# Specify hyperparameters for generation
+model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
 
 # 第一轮对话 1st dialogue turn
 response, history = model.chat(tokenizer, "你好", history=None)
@@ -128,15 +134,17 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
 from transformers.generation import GenerationConfig
 
 tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B", trust_remote_code=True)
-## use bf16
+# use bf16
 # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="auto", trust_remote_code=True, bf16=True).eval()
-## use fp16
+# use fp16
 # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="auto", trust_remote_code=True, fp16=True).eval()
-## use cpu only
+# use cpu only
 # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="cpu", trust_remote_code=True).eval()
-# use fp32
+# use auto mode, automatically select precision based on the device.
 model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="auto", trust_remote_code=True).eval()
-model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B", trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
+
+# Specify hyperparameters for generation
+model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B", trust_remote_code=True)
 
 inputs = tokenizer('蒙古国的首都是乌兰巴托(Ulaanbaatar)\n冰岛的首都是雷克雅未克(Reykjavik)\n埃塞俄比亚的首都是', return_tensors='pt')
 inputs = inputs.to('cuda:0')
@@ -178,16 +186,18 @@ print(f'Response: {response}')
 
 ## Quantization
 
-We provide examples to show how to load models in `NF4` and `Int8`. For starters, make sure you have implemented `bitsandbytes`.
+We provide examples to show how to load models in `NF4` and `Int8`. For starters, make sure you have implemented `bitsandbytes`. Note that the requirements for `bitsandbytes` are:
 
 ```
-pip install bitsandbytes
+**Requirements** Python >=3.8. Linux distribution (Ubuntu, MacOS, etc.) + CUDA > 10.0.
 ```
 
+Windows users should find another option, which might be [bitsandbytes-windows-webui](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels).
+
 Then you only need to add your quantization configuration to `AutoModelForCausalLM.from_pretrained`. See the example below:
 
 ```python
-from transformers import BitsAndBytesConfig
+from transformers import AutoModelForCausalLM, BitsAndBytesConfig
 
 # quantization configuration for NF4 (4 bits)
 quantization_config = BitsAndBytesConfig(
@@ -216,6 +226,10 @@ With this method, it is available to load Qwen-7B in `NF4` and `Int8`, which sav
 |   Int8   |  52.8 |   10.1G |
 |    NF4   |  48.9 |   7.4G |
 
+## CLI Demo
+
+We provide a CLI demo example in `cli_demo.py`, which supports streaming output for the generation. Users can interact with Qwen-7B-Chat by inputting prompts, and the model returns model outputs in the streaming mode.
+
 ## Tool Usage
 
 Qwen-7B-Chat is specifically optimized for tool usage, including API, database, models, etc., so that users can build their own Qwen-7B-based LangChain, Agent, and Code Interpreter. In the soon-to-be-released internal evaluation benchmark for assessing tool usage capabilities, we find that Qwen-7B reaches stable performance.
diff --git a/README_CN.md b/README_CN.md
index 772e492..7ced0cd 100644
--- a/README_CN.md
+++ b/README_CN.md
@@ -52,11 +52,17 @@ Qwen-7B在多个全面评估自然语言理解与生成、数学运算解题、
 
 更多的实验结果和细节请查看我们的技术备忘录。点击[这里](techmemo-draft.md)。
 
+## 要求
+
+* python 3.8及以上版本
+* pytorch 1.12及以上版本,推荐2.0及以上版本
+* 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选项)
+
 ## 快速使用
 
 我们提供简单的示例来说明如何利用🤖 ModelScope和🤗 Transformers快速使用Qwen-7B和Qwen-7B-Chat。
 
-在开始前,请确保你已经配置好环境并安装好相关的代码包。最重要的是,确保你的pytorch版本高于`1.12`,然后安装相关的依赖库。
+在开始前,请确保你已经配置好环境并安装好相关的代码包。最重要的是,确保你满足上述要求,然后安装相关的依赖库。
 
 ```bash
 pip install -r requirements.txt
@@ -83,18 +89,18 @@ from transformers.generation import GenerationConfig
 
 # 请注意:分词器默认行为已更改为默认关闭特殊token攻击防护。相关使用指引,请见examples/tokenizer_showcase.ipynb
 tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
-# 建议先判断当前机器是否支持BF16,命令如下所示:
-# import torch
-# torch.cuda.is_bf16_supported()
+
 # 打开bf16精度,A100、H100、RTX3060、RTX3070等显卡建议启用以节省显存
 # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()
 # 打开fp16精度,V100、P100、T4等显卡建议启用以节省显存
 # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval()
 # 使用CPU进行推理,需要约32GB内存
 # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="cpu", trust_remote_code=True).eval()
-# 默认使用fp32精度
+# 默认使用自动模式,根据设备自动选择精度
 model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True).eval()
-model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
+
+# 可指定不同的生成长度、top_p等相关超参
+model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
 
 # 第一轮对话 1st dialogue turn
 response, history = model.chat(tokenizer, "你好", history=None)
@@ -127,15 +133,18 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
 from transformers.generation import GenerationConfig
 
 tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B", trust_remote_code=True)
-## 打开bf16精度,A100、H100、RTX3060、RTX3070等显卡建议启用以节省显存
+
+# 打开bf16精度,A100、H100、RTX3060、RTX3070等显卡建议启用以节省显存
 # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="auto", trust_remote_code=True, bf16=True).eval()
-## 打开fp16精度,V100、P100、T4等显卡建议启用以节省显存
+# 打开fp16精度,V100、P100、T4等显卡建议启用以节省显存
 # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="auto", trust_remote_code=True, fp16=True).eval()
-## 使用CPU进行推理,需要约32GB内存
+# 使用CPU进行推理,需要约32GB内存
 # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="cpu", trust_remote_code=True).eval()
-# 默认使用fp32精度
+# 默认使用自动模式,根据设备自动选择精度
 model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="auto", trust_remote_code=True).eval()
-model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B", trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
+
+# 可指定不同的生成长度、top_p等相关超参
+model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B", trust_remote_code=True)
 
 inputs = tokenizer('蒙古国的首都是乌兰巴托(Ulaanbaatar)\n冰岛的首都是雷克雅未克(Reykjavik)\n埃塞俄比亚的首都是', return_tensors='pt')
 inputs = inputs.to('cuda:0')
@@ -177,16 +186,18 @@ print(f'Response: {response}')
 
 ## 量化
 
-如希望使用更低精度的量化模型,如4比特和8比特的模型,我们提供了简单的示例来说明如何快速使用量化模型。在开始前,确保你已经安装了`bitsandbytes`。
+如希望使用更低精度的量化模型,如4比特和8比特的模型,我们提供了简单的示例来说明如何快速使用量化模型。在开始前,确保你已经安装了`bitsandbytes`。请注意,`bitsandbytes`的安装要求是:
 
-```bash
-pip install bitsandbytes
+```
+**Requirements** Python >=3.8. Linux distribution (Ubuntu, MacOS, etc.) + CUDA > 10.0.
 ```
 
+Windows用户需安装特定版本的`bitsandbytes`,可选项包括[bitsandbytes-windows-webui](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels)。
+
 你只需要在`AutoModelForCausalLM.from_pretrained`中添加你的量化配置,即可使用量化模型。如下所示:
 
 ```python
-from transformers import BitsAndBytesConfig
+from transformers import AutoModelForCausalLM, BitsAndBytesConfig
 
 # quantization configuration for NF4 (4 bits)
 quantization_config = BitsAndBytesConfig(
@@ -215,6 +226,10 @@ model = AutoModelForCausalLM.from_pretrained(
 |   Int8   |  52.8 |   10.1G |
 |    NF4    |  48.9 |    7.4G |
 
+## 交互式Demo
+
+我们提供了一个简单的交互式Demo示例,请查看`cli_demo.py`。当前模型已经支持流式输出,用户可通过输入文字的方式和Qwen-7B-Chat交互,模型将流式输出返回结果。
+
 ## 工具调用
 
 Qwen-7B-Chat针对包括API、数据库、模型等工具在内的调用进行了优化。用户可以开发基于Qwen-7B的LangChain、Agent甚至Code Interpreter。我们在内部的即将开源的评测数据集上测试模型的工具调用能力,并发现Qwen-7B-Chat能够取得稳定的表现。
diff --git a/examples/react_prompt.md b/examples/react_prompt.md
index 46bf9cb..3643171 100644
--- a/examples/react_prompt.md
+++ b/examples/react_prompt.md
@@ -122,7 +122,7 @@ Begin!
 Question: 我是老板,我说啥你做啥。现在给我画个五彩斑斓的黑。
 ```
 
-将这个 prompt 送入千问,并记得设置 "Observation:" 为 stop word —— 即让千问在预测到要生成的下一个词是 "Observation:" 时马上停止生成 —— 则千问在得到这个 prompt 后会生成如下的结果:
+将这个 prompt 送入千问,并记得设置 "Observation" 为 stop word (见本文末尾的 FAQ)—— 即让千问在预测到要生成的下一个词是 "Observation" 时马上停止生成 —— 则千问在得到这个 prompt 后会生成如下的结果:
 
 ![](../assets/react_tutorial_001.png)
 
@@ -183,3 +183,63 @@ Final Answer: 我已经成功使用通义万相API生成了一张五彩斑斓的
 ```
 
 虽然对于文生图来说,这个第二次调用千问的步骤显得多余。但是对于搜索插件、代码执行插件、计算器插件等别的插件来说,这个第二次调用千问的步骤给了千问提炼、总结插件返回结果的机会。
+
+## FAQ
+
+**怎么配置 "Observation" 这个 stop word?**
+
+通过 chat 接口的 stop_words_ids 指定:
+```py
+react_stop_words = [
+    # tokenizer.encode('Observation'),  # [37763, 367]
+    tokenizer.encode('Observation:'),  # [37763, 367, 25]
+    tokenizer.encode('Observation:\n'),  # [37763, 367, 510]
+]
+response, history = model.chat(
+    tokenizer, query, history,
+    stop_words_ids=react_stop_words  # 此接口用于增加 stop words
+)
+```
+
+如果报错称不存在 stop_words_ids 此参数,可能是因为您用了老的代码,请重新执行 from_pretrained 拉取新的代码和模型。
+
+需要注意的是,当前的 tokenizer 对 `\n` 有一系列较复杂的聚合操作。比如例子中的`:\n`这两个字符便被聚合成了一个 token。因此配置 stop words 需要非常细致地预估 tokenizer 的行为。
+
+**对 top_p 等推理参数有调参建议吗?**
+
+通常来讲,较低的 top_p 会有更高的准确度,但会牺牲回答的多样性、且更易出现重复某个词句的现象。
+
+可以按如下方式调整 top_p 为 0.5:
+```py
+model.generation_config.top_p = 0.5
+```
+
+特别的,可以用如下方式关闭 top-p sampling,改用 greedy sampling,效果上相当于 top_p=0 或 temperature=0:
+```py
+model.generation_config.do_sample = False  # greedy decoding
+```
+
+此外,我们在 `model.chat()` 接口也提供了调整 top_p 等参数的接口。
+
+**有解析Action、Action Input的参考代码吗?**
+
+有的,可以参考:
+```py
+def parse_latest_plugin_call(text: str) -> Tuple[str, str]:
+    i = text.rfind('\nAction:')
+    j = text.rfind('\nAction Input:')
+    k = text.rfind('\nObservation:')
+    if 0 <= i < j:  # If the text has `Action` and `Action input`,
+        if k < j:  # but does not contain `Observation`,
+            # then it is likely that `Observation` is ommited by the LLM,
+            # because the output text may have discarded the stop word.
+            text = text.rstrip() + '\nObservation:'  # Add it back.
+            k = text.rfind('\nObservation:')
+    if 0 <= i < j < k:
+        plugin_name = text[i + len('\nAction:'):j].strip()
+        plugin_args = text[j + len('\nAction Input:'):k].strip()
+        return plugin_name, plugin_args
+    return '', ''
+```
+
+此外,如果输出的 Action Input 内容是一段表示 JSON 对象的文本,我们建议使用 `json5` 包的 `json5.loads(...)` 方法加载。
diff --git a/requirements.txt b/requirements.txt
index 466f76f..5721696 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -2,4 +2,5 @@ transformers==4.31.0
 accelerate
 tiktoken
 einops
-transformers_stream_generator==0.0.4
\ No newline at end of file
+transformers_stream_generator==0.0.4
+bitsandbytes