diff --git a/README_CN.md b/README_CN.md index 5c56708..abe6b70 100644 --- a/README_CN.md +++ b/README_CN.md @@ -22,7 +22,7 @@ 我们开源了**Qwen**(通义千问)系列工作,当前开源模型的参数规模为70亿(7B)和140亿(14B)。本次开源包括基础模型**Qwen**,即**Qwen-7B**和**Qwen-14B**,以及对话模型**Qwen-Chat**,即**Qwen-7B-Chat**和**Qwen-14B-Chat**。模型链接在表格中,请点击了解详情。同时,我们公开了我们的**[技术报告](https://qianwen-res.oss-cn-beijing.aliyuncs.com/QWEN_TECHNICAL_REPORT.pdf)**,请点击上方论文链接查看。 -当前基础模型已经稳定训练了大规模高质量且多样化的数据,覆盖多语言(当前绝以中文和英文为主),总量高达3万亿token。在相关基准评测中,Qwen系列模型拿出非常有竞争力的表现,显著超出同规模模型并紧追一系列最强的闭源模型。此外,我们利用SFT和RLHF技术实现对齐,从基座模型训练得到对话模型。Qwen-Chat具备聊天、文字创作、摘要、信息抽取、翻译等能力,同时还具备一定的代码生成和简单数学推理的能力。在此基础上,我们针对LLM对接外部系统等方面针对性地做了优化,当前具备较强的工具调用能力,以及最近备受关注的Code Interpreter的能力和扮演Agent的能力。 +当前基础模型已经稳定训练了大规模高质量且多样化的数据,覆盖多语言(当前以中文和英文为主),总量高达3万亿token。在相关基准评测中,Qwen系列模型拿出非常有竞争力的表现,显著超出同规模模型并紧追一系列最强的闭源模型。此外,我们利用SFT和RLHF技术实现对齐,从基座模型训练得到对话模型。Qwen-Chat具备聊天、文字创作、摘要、信息抽取、翻译等能力,同时还具备一定的代码生成和简单数学推理的能力。在此基础上,我们针对LLM对接外部系统等方面针对性地做了优化,当前具备较强的工具调用能力,以及最近备受关注的Code Interpreter的能力和扮演Agent的能力。 在这个项目中,你可以了解到以下内容