|
|
|
# This code is based on the revised code from fastchat based on tatsu-lab/stanford_alpaca.
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass, field
|
|
|
|
import json
|
|
|
|
import math
|
|
|
|
import logging
|
|
|
|
import os
|
|
|
|
from typing import Dict, Optional, List
|
|
|
|
import torch
|
|
|
|
from torch.utils.data import Dataset
|
|
|
|
from deepspeed import zero
|
|
|
|
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
|
|
|
|
import transformers
|
|
|
|
from transformers import Trainer, GPTQConfig, deepspeed
|
|
|
|
from transformers.trainer_pt_utils import LabelSmoother
|
|
|
|
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
|
|
|
|
from accelerate.utils import DistributedType
|
|
|
|
|
|
|
|
|
|
|
|
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class ModelArguments:
|
|
|
|
model_name_or_path: Optional[str] = field(default="Qwen/Qwen-7B")
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class DataArguments:
|
|
|
|
data_path: str = field(
|
|
|
|
default=None, metadata={"help": "Path to the training data."}
|
|
|
|
)
|
|
|
|
eval_data_path: str = field(
|
|
|
|
default=None, metadata={"help": "Path to the evaluation data."}
|
|
|
|
)
|
|
|
|
lazy_preprocess: bool = False
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class TrainingArguments(transformers.TrainingArguments):
|
|
|
|
cache_dir: Optional[str] = field(default=None)
|
|
|
|
optim: str = field(default="adamw_torch")
|
|
|
|
model_max_length: int = field(
|
|
|
|
default=8192,
|
|
|
|
metadata={
|
|
|
|
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
|
|
|
|
},
|
|
|
|
)
|
|
|
|
use_lora: bool = False
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class LoraArguments:
|
|
|
|
lora_r: int = 64
|
|
|
|
lora_alpha: int = 16
|
|
|
|
lora_dropout: float = 0.05
|
|
|
|
lora_target_modules: List[str] = field(
|
|
|
|
default_factory=lambda: ["c_attn", "c_proj", "w1", "w2"]
|
|
|
|
)
|
|
|
|
lora_weight_path: str = ""
|
|
|
|
lora_bias: str = "none"
|
|
|
|
q_lora: bool = False
|
|
|
|
|
|
|
|
|
|
|
|
def maybe_zero_3(param):
|
|
|
|
if hasattr(param, "ds_id"):
|
|
|
|
assert param.ds_status == ZeroParamStatus.NOT_AVAILABLE
|
|
|
|
with zero.GatheredParameters([param]):
|
|
|
|
param = param.data.detach().cpu().clone()
|
|
|
|
else:
|
|
|
|
param = param.detach().cpu().clone()
|
|
|
|
return param
|
|
|
|
|
|
|
|
|
|
|
|
# Borrowed from peft.utils.get_peft_model_state_dict
|
|
|
|
def get_peft_state_maybe_zero_3(named_params, bias):
|
|
|
|
if bias == "none":
|
|
|
|
to_return = {k: t for k, t in named_params if "lora_" in k}
|
|
|
|
elif bias == "all":
|
|
|
|
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
|
|
|
|
elif bias == "lora_only":
|
|
|
|
to_return = {}
|
|
|
|
maybe_lora_bias = {}
|
|
|
|
lora_bias_names = set()
|
|
|
|
for k, t in named_params:
|
|
|
|
if "lora_" in k:
|
|
|
|
to_return[k] = t
|
|
|
|
bias_name = k.split("lora_")[0] + "bias"
|
|
|
|
lora_bias_names.add(bias_name)
|
|
|
|
elif "bias" in k:
|
|
|
|
maybe_lora_bias[k] = t
|
|
|
|
for k, t in maybe_lora_bias:
|
|
|
|
if bias_name in lora_bias_names:
|
|
|
|
to_return[bias_name] = t
|
|
|
|
else:
|
|
|
|
raise NotImplementedError
|
|
|
|
to_return = {k: maybe_zero_3(v) for k, v in to_return.items()}
|
|
|
|
return to_return
|
|
|
|
|
|
|
|
|
|
|
|
local_rank = None
|
|
|
|
|
|
|
|
def rank0_print(*args):
|
|
|
|
if local_rank == 0:
|
|
|
|
print(*args)
|
|
|
|
|
|
|
|
|
|
|
|
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str, bias="none"):
|
|
|
|
"""Collects the state dict and dump to disk."""
|
|
|
|
# check if zero3 mode enabled
|
|
|
|
if deepspeed.is_deepspeed_zero3_enabled():
|
|
|
|
state_dict = trainer.model_wrapped._zero3_consolidated_16bit_state_dict()
|
|
|
|
else:
|
|
|
|
if trainer.args.use_lora:
|
|
|
|
state_dict = get_peft_state_maybe_zero_3(
|
|
|
|
trainer.model.named_parameters(), bias
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
state_dict = trainer.model.state_dict()
|
|
|
|
if trainer.args.should_save and trainer.args.local_rank == 0:
|
|
|
|
trainer._save(output_dir, state_dict=state_dict)
|
|
|
|
|
|
|
|
|
|
|
|
def preprocess(
|
|
|
|
sources,
|
|
|
|
tokenizer: transformers.PreTrainedTokenizer,
|
|
|
|
max_len: int,
|
|
|
|
system_message: str = "You are a helpful assistant."
|
|
|
|
) -> Dict:
|
|
|
|
roles = {"user": "<|im_start|>user", "assistant": "<|im_start|>assistant"}
|
|
|
|
|
|
|
|
im_start = tokenizer.im_start_id
|
|
|
|
im_end = tokenizer.im_end_id
|
|
|
|
nl_tokens = tokenizer('\n').input_ids
|
|
|
|
_system = tokenizer('system').input_ids + nl_tokens
|
|
|
|
_user = tokenizer('user').input_ids + nl_tokens
|
|
|
|
_assistant = tokenizer('assistant').input_ids + nl_tokens
|
|
|
|
|
|
|
|
# Apply prompt templates
|
|
|
|
input_ids, targets = [], []
|
|
|
|
for i, source in enumerate(sources):
|
|
|
|
if roles[source[0]["from"]] != roles["user"]:
|
|
|
|
source = source[1:]
|
|
|
|
|
|
|
|
input_id, target = [], []
|
|
|
|
system = [im_start] + _system + tokenizer(system_message).input_ids + [im_end] + nl_tokens
|
|
|
|
input_id += system
|
|
|
|
target += [im_start] + [IGNORE_TOKEN_ID] * (len(system)-3) + [im_end] + nl_tokens
|
|
|
|
assert len(input_id) == len(target)
|
|
|
|
for j, sentence in enumerate(source):
|
|
|
|
role = roles[sentence["from"]]
|
|
|
|
_input_id = tokenizer(role).input_ids + nl_tokens + \
|
|
|
|
tokenizer(sentence["value"]).input_ids + [im_end] + nl_tokens
|
|
|
|
input_id += _input_id
|
|
|
|
if role == '<|im_start|>user':
|
|
|
|
_target = [im_start] + [IGNORE_TOKEN_ID] * (len(_input_id)-3) + [im_end] + nl_tokens
|
|
|
|
elif role == '<|im_start|>assistant':
|
|
|
|
_target = [im_start] + [IGNORE_TOKEN_ID] * len(tokenizer(role).input_ids) + \
|
|
|
|
_input_id[len(tokenizer(role).input_ids)+1:-2] + [im_end] + nl_tokens
|
|
|
|
else:
|
|
|
|
raise NotImplementedError
|
|
|
|
target += _target
|
|
|
|
assert len(input_id) == len(target)
|
|
|
|
input_id += [tokenizer.pad_token_id] * (max_len - len(input_id))
|
|
|
|
target += [IGNORE_TOKEN_ID] * (max_len - len(target))
|
|
|
|
input_ids.append(input_id[:max_len])
|
|
|
|
targets.append(target[:max_len])
|
|
|
|
input_ids = torch.tensor(input_ids, dtype=torch.int)
|
|
|
|
targets = torch.tensor(targets, dtype=torch.int)
|
|
|
|
|
|
|
|
return dict(
|
|
|
|
input_ids=input_ids,
|
|
|
|
labels=targets,
|
|
|
|
attention_mask=input_ids.ne(tokenizer.pad_token_id),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class SupervisedDataset(Dataset):
|
|
|
|
"""Dataset for supervised fine-tuning."""
|
|
|
|
|
|
|
|
def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer, max_len: int):
|
|
|
|
super(SupervisedDataset, self).__init__()
|
|
|
|
|
|
|
|
rank0_print("Formatting inputs...")
|
|
|
|
sources = [example["conversations"] for example in raw_data]
|
|
|
|
data_dict = preprocess(sources, tokenizer, max_len)
|
|
|
|
|
|
|
|
self.input_ids = data_dict["input_ids"]
|
|
|
|
self.labels = data_dict["labels"]
|
|
|
|
self.attention_mask = data_dict["attention_mask"]
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.input_ids)
|
|
|
|
|
|
|
|
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
|
|
|
return dict(
|
|
|
|
input_ids=self.input_ids[i],
|
|
|
|
labels=self.labels[i],
|
|
|
|
attention_mask=self.attention_mask[i],
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class LazySupervisedDataset(Dataset):
|
|
|
|
"""Dataset for supervised fine-tuning."""
|
|
|
|
|
|
|
|
def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer, max_len: int):
|
|
|
|
super(LazySupervisedDataset, self).__init__()
|
|
|
|
self.tokenizer = tokenizer
|
|
|
|
self.max_len = max_len
|
|
|
|
|
|
|
|
rank0_print("Formatting inputs...Skip in lazy mode")
|
|
|
|
self.tokenizer = tokenizer
|
|
|
|
self.raw_data = raw_data
|
|
|
|
self.cached_data_dict = {}
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.raw_data)
|
|
|
|
|
|
|
|
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
|
|
|
if i in self.cached_data_dict:
|
|
|
|
return self.cached_data_dict[i]
|
|
|
|
|
|
|
|
ret = preprocess([self.raw_data[i]["conversations"]], self.tokenizer, self.max_len)
|
|
|
|
ret = dict(
|
|
|
|
input_ids=ret["input_ids"][0],
|
|
|
|
labels=ret["labels"][0],
|
|
|
|
attention_mask=ret["attention_mask"][0],
|
|
|
|
)
|
|
|
|
self.cached_data_dict[i] = ret
|
|
|
|
|
|
|
|
return ret
|
|
|
|
|
|
|
|
|
|
|
|
def make_supervised_data_module(
|
|
|
|
tokenizer: transformers.PreTrainedTokenizer, data_args, max_len,
|
|
|
|
) -> Dict:
|
|
|
|
"""Make dataset and collator for supervised fine-tuning."""
|
|
|
|
dataset_cls = (
|
|
|
|
LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset
|
|
|
|
)
|
|
|
|
rank0_print("Loading data...")
|
|
|
|
|
|
|
|
train_json = json.load(open(data_args.data_path, "r"))
|
|
|
|
train_dataset = dataset_cls(train_json, tokenizer=tokenizer, max_len=max_len)
|
|
|
|
|
|
|
|
if data_args.eval_data_path:
|
|
|
|
eval_json = json.load(open(data_args.eval_data_path, "r"))
|
|
|
|
eval_dataset = dataset_cls(eval_json, tokenizer=tokenizer, max_len=max_len)
|
|
|
|
else:
|
|
|
|
eval_dataset = None
|
|
|
|
|
|
|
|
return dict(train_dataset=train_dataset, eval_dataset=eval_dataset)
|
|
|
|
|
|
|
|
|
|
|
|
def train():
|
|
|
|
global local_rank
|
|
|
|
|
|
|
|
parser = transformers.HfArgumentParser(
|
|
|
|
(ModelArguments, DataArguments, TrainingArguments, LoraArguments)
|
|
|
|
)
|
|
|
|
(
|
|
|
|
model_args,
|
|
|
|
data_args,
|
|
|
|
training_args,
|
|
|
|
lora_args,
|
|
|
|
) = parser.parse_args_into_dataclasses()
|
|
|
|
|
|
|
|
# This serves for single-gpu qlora.
|
|
|
|
if getattr(training_args, 'deepspeed', None) and int(os.environ.get("WORLD_SIZE", 1))==1:
|
|
|
|
training_args.distributed_state.distributed_type = DistributedType.DEEPSPEED
|
|
|
|
|
|
|
|
local_rank = training_args.local_rank
|
|
|
|
|
|
|
|
device_map = None
|
|
|
|
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
|
|
|
ddp = world_size != 1
|
|
|
|
if lora_args.q_lora:
|
|
|
|
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else "auto"
|
|
|
|
if len(training_args.fsdp) > 0 or deepspeed.is_deepspeed_zero3_enabled():
|
|
|
|
logging.warning(
|
|
|
|
"FSDP or ZeRO3 are incompatible with QLoRA."
|
|
|
|
)
|
|
|
|
|
|
|
|
is_chat_model = 'chat' in model_args.model_name_or_path.lower()
|
|
|
|
if (
|
|
|
|
training_args.use_lora
|
|
|
|
and not lora_args.q_lora
|
|
|
|
and deepspeed.is_deepspeed_zero3_enabled()
|
|
|
|
and not is_chat_model
|
|
|
|
):
|
|
|
|
raise RuntimeError("ZeRO3 is incompatible with LoRA when finetuning on base model.")
|
|
|
|
|
|
|
|
model_load_kwargs = {}
|
|
|
|
if deepspeed.is_deepspeed_zero3_enabled():
|
|
|
|
model_load_kwargs['low_cpu_mem_usage'] = False
|
|
|
|
|
|
|
|
# Set RoPE scaling factor
|
|
|
|
config = transformers.AutoConfig.from_pretrained(
|
|
|
|
model_args.model_name_or_path,
|
|
|
|
cache_dir=training_args.cache_dir,
|
|
|
|
trust_remote_code=True,
|
|
|
|
)
|
|
|
|
config.use_cache = False
|
|
|
|
|
|
|
|
# Load model and tokenizer
|
|
|
|
model = transformers.AutoModelForCausalLM.from_pretrained(
|
|
|
|
model_args.model_name_or_path,
|
|
|
|
config=config,
|
|
|
|
cache_dir=training_args.cache_dir,
|
|
|
|
device_map=device_map,
|
|
|
|
trust_remote_code=True,
|
|
|
|
quantization_config=GPTQConfig(
|
|
|
|
bits=4, disable_exllama=True
|
|
|
|
)
|
|
|
|
if training_args.use_lora and lora_args.q_lora
|
|
|
|
else None,
|
|
|
|
**model_load_kwargs,
|
|
|
|
)
|
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
|
|
|
model_args.model_name_or_path,
|
|
|
|
cache_dir=training_args.cache_dir,
|
|
|
|
model_max_length=training_args.model_max_length,
|
|
|
|
padding_side="right",
|
|
|
|
use_fast=False,
|
|
|
|
trust_remote_code=True,
|
|
|
|
)
|
|
|
|
tokenizer.pad_token_id = tokenizer.eod_id
|
|
|
|
|
|
|
|
if training_args.use_lora:
|
|
|
|
if lora_args.q_lora or is_chat_model:
|
|
|
|
modules_to_save = None
|
|
|
|
else:
|
|
|
|
modules_to_save = ["wte", "lm_head"]
|
|
|
|
lora_config = LoraConfig(
|
|
|
|
r=lora_args.lora_r,
|
|
|
|
lora_alpha=lora_args.lora_alpha,
|
|
|
|
target_modules=lora_args.lora_target_modules,
|
|
|
|
lora_dropout=lora_args.lora_dropout,
|
|
|
|
bias=lora_args.lora_bias,
|
|
|
|
task_type="CAUSAL_LM",
|
|
|
|
modules_to_save=modules_to_save # This argument serves for adding new tokens.
|
|
|
|
)
|
|
|
|
if lora_args.q_lora:
|
|
|
|
model = prepare_model_for_kbit_training(
|
|
|
|
model, use_gradient_checkpointing=training_args.gradient_checkpointing
|
|
|
|
)
|
|
|
|
|
|
|
|
model = get_peft_model(model, lora_config)
|
|
|
|
|
|
|
|
# Print peft trainable params
|
|
|
|
model.print_trainable_parameters()
|
|
|
|
|
|
|
|
if training_args.gradient_checkpointing:
|
|
|
|
model.enable_input_require_grads()
|
|
|
|
|
|
|
|
# Load data
|
|
|
|
data_module = make_supervised_data_module(
|
|
|
|
tokenizer=tokenizer, data_args=data_args, max_len=training_args.model_max_length
|
|
|
|
)
|
|
|
|
|
|
|
|
# Start trainner
|
|
|
|
trainer = Trainer(
|
|
|
|
model=model, tokenizer=tokenizer, args=training_args, **data_module
|
|
|
|
)
|
|
|
|
|
|
|
|
trainer.train()
|
|
|
|
trainer.save_state()
|
|
|
|
|
|
|
|
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir, bias=lora_args.lora_bias)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
train()
|