You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

263 lines
12 KiB
Python

1 year ago
import os
import pandas as pd
import numpy as np
import argparse
import datasets
import torch
from typing import List
from tqdm import tqdm
from transformers.trainer_utils import set_seed
'''
wget https://huggingface.co/datasets/ceval/ceval-exam/resolve/main/ceval-exam.zip
mkdir data/ceval
mv ceval-exam.zip data/ceval
cd data/ceval; unzip ceval-exam.zip
cd ../../
python evaluate_ceval.py -d data/ceval/
'''
def load_models_tokenizer(args):
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True).eval()
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True)
return model, tokenizer
def format_example(line, include_answer=True):
example = '问题:' + line['question']
for choice in choices:
example += f'\n{choice}. {line[f"{choice}"]}'
if include_answer:
example += '\n答案:' + line["answer"] + '\n\n'
else:
example += '\n答案:'
return example
def generate_few_shot_prompt(k, subject, dev_df):
prompt = ''
if k == -1:
k = dev_df.shape[0]
for i in range(k):
prompt += format_example(
dev_df.iloc[i, :],
include_answer=True,
)
return prompt
def get_logits(tokenizer, model, inputs: List[str]):
input_ids = tokenizer(inputs, padding=False)['input_ids']
input_ids = torch.tensor(input_ids, device=model.device)
tokens = {'input_ids': input_ids}
outputs = model(input_ids)['logits']
logits = outputs[:, -1, :]
log_probs = torch.nn.functional.softmax(logits, dim=-1)
return log_probs, {'tokens': tokens}
@torch.no_grad()
def eval_subject(
model,
tokenizer,
subject_name,
test_df,
k=5,
dev_df=None,
few_shot=False,
save_result_dir=None,
**kwargs
):
result = []
score = []
few_shot_prompt = generate_few_shot_prompt(
k, subject_name, dev_df) if few_shot else []
all_probs = {'prob_A': [], 'prob_B': [], 'prob_C': [], 'prob_D': []}
if args.debug: print(f"few_shot_prompt: {few_shot_prompt}")
for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
question = format_example(row, include_answer=False)
full_prompt = few_shot_prompt + question
output, input_info = get_logits(tokenizer, model, [full_prompt])
assert output.shape[0] == 1
logits = output.flatten()
softval = torch.nn.functional.softmax(
torch.tensor(
[
logits[tokenizer("A")['input_ids']],
logits[tokenizer("B")['input_ids']],
logits[tokenizer("C")['input_ids']],
logits[tokenizer("D")['input_ids']],
]
),
dim=0,
)
if softval.dtype in {torch.bfloat16, torch.float16}:
softval = softval.to(dtype=torch.float32)
probs = softval.detach().cpu().numpy()
for i, choice in enumerate(choices):
all_probs[f'prob_{choice}'].append(probs[i])
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs)]
if 'answer' in row:
correct = 1 if pred == row['answer'] else 0
score.append(correct)
if args.debug: print(f'{question} pred: {pred} ref: {row["answer"]}')
result.append(pred)
if score:
correct_ratio = 100 * sum(score) / len(score)
if args.debug: print(subject_name, correct_ratio)
else:
correct_ratio = 0
if save_result_dir:
test_df['model_output'] = result
for i, choice in enumerate(choices):
test_df[f'prob_{choice}'] = (all_probs[f'prob_{choice}'])
if score:
test_df["correctness"] = score
os.makedirs(save_result_dir, exist_ok=True)
test_df.to_csv(os.path.join(
save_result_dir, f'{subject_name}_result.csv'), encoding="utf-8", index=False)
return correct_ratio
def cal_ceval(res):
acc_sum_dict = dict()
acc_norm_sum_dict = dict()
cnt_dict = dict()
acc_sum = 0.
cnt = 0
hard_cnt = 0
hard_acc_sum = 0.
for tt in res.keys():
name = tt.split('-')[-1]
acc_sum += float(res[tt])
cnt += 1
class_ = TASK_NAME_MAPPING[name][2]
if class_ not in acc_sum_dict:
acc_sum_dict[class_] = 0.
acc_norm_sum_dict[class_] = 0.
cnt_dict[class_] = 0.
if name in hard_list:
hard_cnt += 1
hard_acc_sum += float(res[tt])
acc_sum_dict[class_] += float(res[tt])
cnt_dict[class_] += 1
print('\n\n\n')
for k in ['STEM', 'Social Science', 'Humanities', 'Other']:
if k in cnt_dict:
print('%s acc: %.2f ' % (
k, acc_sum_dict[k] / cnt_dict[k]))
if hard_cnt > 0:
print('Hard acc:%.2f ' % (hard_acc_sum / hard_cnt))
print('AVERAGE acc:%.2f ' % (acc_sum / cnt))
TASK_NAME_MAPPING = {
"computer_network": ["Computer Network", "\u8ba1\u7b97\u673a\u7f51\u7edc", "STEM"],
"operating_system": ["Operating System", "\u64cd\u4f5c\u7cfb\u7edf", "STEM"],
"computer_architecture": ["Computer Architecture", "\u8ba1\u7b97\u673a\u7ec4\u6210", "STEM"],
"college_programming": ["College Programming", "\u5927\u5b66\u7f16\u7a0b", "STEM"],
"college_physics": ["College Physics", "\u5927\u5b66\u7269\u7406", "STEM"],
"college_chemistry": ["College Chemistry", "\u5927\u5b66\u5316\u5b66", "STEM"],
"advanced_mathematics": ["Advanced Mathematics", "\u9ad8\u7b49\u6570\u5b66", "STEM"],
"probability_and_statistics": ["Probability and Statistics", "\u6982\u7387\u7edf\u8ba1", "STEM"],
"discrete_mathematics": ["Discrete Mathematics", "\u79bb\u6563\u6570\u5b66", "STEM"],
"electrical_engineer": ["Electrical Engineer", "\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08", "STEM"],
"metrology_engineer": ["Metrology Engineer", "\u6ce8\u518c\u8ba1\u91cf\u5e08", "STEM"],
"high_school_mathematics": ["High School Mathematics", "\u9ad8\u4e2d\u6570\u5b66", "STEM"],
"high_school_physics": ["High School Physics", "\u9ad8\u4e2d\u7269\u7406", "STEM"],
"high_school_chemistry": ["High School Chemistry", "\u9ad8\u4e2d\u5316\u5b66", "STEM"],
"high_school_biology": ["High School Biology", "\u9ad8\u4e2d\u751f\u7269", "STEM"],
"middle_school_mathematics": ["Middle School Mathematics", "\u521d\u4e2d\u6570\u5b66", "STEM"],
"middle_school_biology": ["Middle School Biology", "\u521d\u4e2d\u751f\u7269", "STEM"],
"middle_school_physics": ["Middle School Physics", "\u521d\u4e2d\u7269\u7406", "STEM"],
"middle_school_chemistry": ["Middle School Chemistry", "\u521d\u4e2d\u5316\u5b66", "STEM"],
"veterinary_medicine": ["Veterinary Medicine", "\u517d\u533b\u5b66", "STEM"],
"college_economics": ["College Economics", "\u5927\u5b66\u7ecf\u6d4e\u5b66", "Social Science"],
"business_administration": ["Business Administration", "\u5de5\u5546\u7ba1\u7406", "Social Science"],
"marxism": ["Marxism", "\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406", "Social Science"],
"mao_zedong_thought": ["Mao Zedong Thought", "\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba", "Social Science"],
"education_science": ["Education Science", "\u6559\u80b2\u5b66", "Social Science"],
"teacher_qualification": ["Teacher Qualification", "\u6559\u5e08\u8d44\u683c", "Social Science"],
"high_school_politics": ["High School Politics", "\u9ad8\u4e2d\u653f\u6cbb", "Social Science"],
"high_school_geography": ["High School Geography", "\u9ad8\u4e2d\u5730\u7406", "Social Science"],
"middle_school_politics": ["Middle School Politics", "\u521d\u4e2d\u653f\u6cbb", "Social Science"],
"middle_school_geography": ["Middle School Geography", "\u521d\u4e2d\u5730\u7406", "Social Science"],
"modern_chinese_history": ["Modern Chinese History", "\u8fd1\u4ee3\u53f2\u7eb2\u8981", "Humanities"],
"ideological_and_moral_cultivation": ["Ideological and Moral Cultivation", "\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840", "Humanities"],
"logic": ["Logic", "\u903b\u8f91\u5b66", "Humanities"],
"law": ["Law", "\u6cd5\u5b66", "Humanities"],
"chinese_language_and_literature": ["Chinese Language and Literature", "\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66", "Humanities"],
"art_studies": ["Art Studies", "\u827a\u672f\u5b66", "Humanities"],
"professional_tour_guide": ["Professional Tour Guide", "\u5bfc\u6e38\u8d44\u683c", "Humanities"],
"legal_professional": ["Legal Professional", "\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c", "Humanities"],
"high_school_chinese": ["High School Chinese", "\u9ad8\u4e2d\u8bed\u6587", "Humanities"],
"high_school_history": ["High School History", "\u9ad8\u4e2d\u5386\u53f2", "Humanities"],
"middle_school_history": ["Middle School History", "\u521d\u4e2d\u5386\u53f2", "Humanities"],
"civil_servant": ["Civil Servant", "\u516c\u52a1\u5458", "Other"],
"sports_science": ["Sports Science", "\u4f53\u80b2\u5b66", "Other"],
"plant_protection": ["Plant Protection", "\u690d\u7269\u4fdd\u62a4", "Other"],
"basic_medicine": ["Basic Medicine", "\u57fa\u7840\u533b\u5b66", "Other"],
"clinical_medicine": ["Clinical Medicine", "\u4e34\u5e8a\u533b\u5b66", "Other"],
"urban_and_rural_planner": ["Urban and Rural Planner", "\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08", "Other"],
"accountant": ["Accountant", "\u6ce8\u518c\u4f1a\u8ba1\u5e08", "Other"],
"fire_engineer": ["Fire Engineer", "\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08", "Other"],
"environmental_impact_assessment_engineer": ["Environmental Impact Assessment Engineer", "\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08", "Other"],
"tax_accountant": ["Tax Accountant", "\u7a0e\u52a1\u5e08", "Other"],
"physician": ["Physician", "\u533b\u5e08\u8d44\u683c", "Other"]
}
hard_list = ['advanced_mathematics', 'discrete_mathematics', 'probability_and_statistics', 'college_physics', 'college_chemistry', 'high_school_mathematics', 'high_school_physics', 'high_school_chemistry']
choices = ["A", "B", "C", "D"]
def main(args):
model, tokenizer = load_models_tokenizer(args)
dev_result = {}
for subject_name in tqdm(TASK_NAME_MAPPING.keys()):
val_file_path = os.path.join(args.eval_data_path, 'val', f'{subject_name}_val.csv')
dev_file_path = os.path.join(args.eval_data_path, 'dev', f'{subject_name}_dev.csv')
# test_file_path = os.path.join(args.eval_data_path, 'test', f'{subject_name}_test.csv')
val_df = pd.read_csv(val_file_path)
dev_df = pd.read_csv(dev_file_path)
# test_df = pd.read_csv(test_file_path)
score = eval_subject(model, tokenizer, subject_name, val_df, dev_df=dev_df, k=5, few_shot=True,
save_result_dir=f"outs/ceval_eval_result")
dev_result[subject_name] = score
cal_ceval(dev_result)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Test HF checkpoint.')
parser.add_argument('-c', '--checkpoint-path', type=str, help='Checkpoint path', default="Qwen/Qwen-7B")
parser.add_argument('-s', '--seed', type=int, default=1234, help='Random seed')
"""Provide extra arguments required for tasks."""
group = parser.add_argument_group(title='Evaluation options')
group.add_argument('-d', '--eval_data_path', type=str, required=True,
help='Path to eval data')
group.add_argument("--max-seq-len", type=int, default=2048,
help='Size of the output generated text.')
group.add_argument("--debug", action='store_true', default=False,
help='Print infos.')
args = parser.parse_args()
set_seed(args.seed)
main(args)