Nous ouvrons notre série **Qwen**, qui comprend désormais **Qwen**, les modèles de langue de base, à savoir **Qwen-7B** et **Qwen-14B**, ainsi que **Qwen-Chat**, les modèles de chat, à savoir **Qwen-7B-Chat** et **Qwen-14B-Chat**. Les liens se trouvent dans le tableau ci-dessus. Cliquez dessus et consultez les fiches des modèles. Nous publions également le **[rapport technique](https://arxiv.org/abs/2309.16609)**. Cliquez sur le lien du document et consultez-le !
En bref, nous disposons de modèles linguistiques solides, qui ont été pré-entraîné de manière stable pour 3 000 milliards de tokens de données multilingues avec une large couverture de domaines, de langues (en particulier le chinois et l'anglais), etc. Ils sont capables d'atteindre des performances compétitives sur des ensembles de données de référence. En outre, nous disposons de modèles de chat alignés sur les préférences humaines basées sur SFT et RLHF (pas encore publiés), qui sont capables de chatter, de créer du contenu, d'extraire des informations, de résumer, de traduire, de coder, de résoudre des problèmes mathématiques, etc. et d'utiliser des outils, de jouer le rôle d'agents ou même code interpreter, etc.
| Modèle | Date de sortie | Longueur maximale | Amélioration de l'invite du système | # de tokens pré-formés | Utilisation minimale de la mémoire du GPU pour Finetuning (Q-Lora) | Utilisation minimale du GPU pour générer 2048 jetons (Int4) | Utilisation des outils |
* Instructions sur la création de démos, y compris WebUI, démo CLI, etc.
* Introduction au service API de DashScope, ainsi que les instructions pour construire une API de type OpenAI pour votre modèle.
* Informations sur Qwen pour l'utilisation d'outils, d'agents et code interpreter.
* Statistiques de l'évaluation de la compréhension du contexte long.
* Contrat de licence.
* ...
En outre, si vous rencontrez des problèmes, consultez d'abord la [FAQ](FAQ.md) pour obtenir de l'aide. Vous vous sentez toujours en difficulté ? N'hésitez pas à nous envoyer des questions (de préférence en anglais pour que plus de gens puissent vous comprendre) ! Si vous souhaitez nous aider, envoyez-nous des demandes d'extension sans hésitation ! Nous sommes toujours enthousiastes à propos des relations publiques !
Vous voulez discuter avec nous ou prendre un café avec nous ? Bienvenue sur notre Discord ou WeChat !
* 2023.11.30 🔥 Nous publions **Qwen-72B** et **Qwen-72B-Chat**, qui sont entraînés sur des tokens 3T et prennent en charge 32k contextes, ainsi que **Qwen-1.8B** et **Qwen-1.8B-Chat**, sur ModelScope et Hugging Face. Nous avons également renforcé les capacités de l'invite système du Qwen-72B-Chat et du Qwen-1.8B-Chat, voir la [documentation d'exemple](examples/system_prompt.md). De plus, nous supportons l'inférence sur **Ascend 910** et **Hygon DCU**. Consultez `ascend-support` et `dcu-support` pour plus de détails.
* 2023.9.25 🔥 Nous publions **Qwen-14B** et **Qwen-14B-Chat** sur ModelScope et Hugging Face, ainsi que [qwen.cpp](https://github.com/QwenLM/qwen.cpp) et [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent). Les codes et les poids de **Qwen-7B** et **Qwen-7B-Chat** ont également été mis à jour. **S'IL VOUS PLAÎT, TIREZ LA DERNIÈRE VERSION!**
- Par rapport à **Qwen-7B** (original), **Qwen-7B** utilise davantage de jetons d'entraînement, passant de 2,2 à 2,4T de jetons, tandis que la longueur du contexte passe de 2048 à 8192. La connaissance du chinois et la capacité de codage de **Qwen-7B** ont été encore améliorées.
* 2023.9.12 Nous prenons désormais en charge le finetuning sur les modèles Qwen-7B, y compris le finetuning de tous les paramètres, LoRA et Q-LoRA.
* 2023.8.21 Nous publions le modèle quantifié Int4 pour Qwen-7B-Chat, **Qwen-7B-Chat-Int4**, qui nécessite de faibles coûts de mémoire mais permet d'améliorer la vitesse d'inférence. En outre, il n'y a pas de dégradation significative des performances lors de l'évaluation de référence.
* 2023.8.3 Nous publions **Qwen-7B** et **Qwen-7B-Chat** sur ModelScope et Hugging Face. Nous fournissons également un mémo technique pour plus de détails sur le modèle, y compris les détails de l'entraînement et les performances du modèle.
Les modèles Qwen surpassent les modèles de base de taille similaire sur une série de données de référence, par exemple MMLU, C-Eval, GSM8K, MATH, HumanEval, MBPP, BBH, etc., qui évaluent les capacités des modèles sur la compréhension du langage naturel, la résolution de problèmes mathématiques, le codage, etc. Qwen-72B obtient de meilleures performances que LLaMA2-70B dans toutes les tâches et surpasse GPT-3.5 dans 7 tâches sur 10.
Pour tous les modèles comparés, nous indiquons les meilleurs scores entre leurs résultats officiels et [OpenCompass] (https://opencompass.org.cn/leaderboard-llm).
Pour plus de résultats expérimentaux (performances détaillées des modèles sur d'autres ensembles de données de référence) et de détails, veuillez vous référer à notre rapport technique en cliquant [ici](https://qianwen-res.oss-cn-beijing.aliyuncs.com/QWEN_TECHNICAL_REPORT.pdf).
<br><br>
## Besoins
* python 3.8 et plus
* pytorch 1.12 et plus, 2.0 et plus sont recommandés
* transformers 4.32 et plus
* CUDA 11.4 et plus sont recommandés (pour les utilisateurs de GPU, les utilisateurs de flash, etc.)
<br>
## Démarrage Rapide
Ci-dessous, nous fournissons des exemples simples pour montrer comment utiliser Qwen-Chat avec 🤖 ModelScope et 🤗 Transformers.
Vous pouvez utiliser nos images docker pré-construites pour sauter la plupart des étapes de configuration de l'environnement, voir la section ["Utiliser des images docker pré-construites"](#-using-pre-built-docker-images) pour plus de détails.
Si vous n'utilisez pas Docker, assurez-vous d'avoir configuré l'environnement et installé les paquets requis. Assurez-vous de répondre aux exigences ci-dessus, puis installez les bibliothèques dépendantes.
Si votre appareil supporte fp16 ou bf16, nous vous recommandons d'installer [flash-attention](https://github.com/Dao-AILab/flash-attention) (**nous supportons flash-attention 2 maintenant.**) pour une meilleure efficacité et une moindre utilisation de la mémoire. (**flash-attention est optionnel et le projet peut fonctionner normalement sans l'installer**)
# Below are optional. Installing them might be slow.
# pip install csrc/layer_norm
# pip install csrc/rotary
```
Vous pouvez maintenant commencer avec ModelScope ou Transformers.
### 🤗 Transformers
Pour utiliser Qwen-Chat pour l'inférence, il vous suffit de saisir quelques lignes de code, comme indiqué ci-dessous. N'oubliez pas de transmettre les noms de modèles ou les chemins corrects, tels que "Qwen/Qwen-7B-Chat" et "Qwen/Qwen-14B-Chat". Cependant, **veuillez vous assurer que vous utilisez le code le plus récent**.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
# Model names: "Qwen/Qwen-7B-Chat", "Qwen/Qwen-14B-Chat"
En cas de problème de réseau lors de la tentative de téléchargement des poids et des codes du modèle à partir de HuggingFace, une autre approche consiste à récupérer le point de contrôle à partir de ModelScope, puis à le charger à partir du répertoire local, comme indiqué ci-dessous:
```python
from modelscope import snapshot_download
from transformers import AutoModelForCausalLM, AutoTokenizer
# Downloading model checkpoint to a local dir model_dir
ModelScope est une plateforme opensource pour Model-as-a-Service (MaaS), qui fournit un service de modèle flexible et rentable aux développeurs d'IA. De même, vous pouvez exécuter les modèles avec ModelScope comme indiqué ci-dessous:
```python
from modelscope import AutoModelForCausalLM, AutoTokenizer
from modelscope import GenerationConfig
# Model names: "qwen/Qwen-7B-Chat", "qwen/Qwen-14B-Chat"
response, history = model.chat(tokenizer, "你好", history=None)
print(response)
response, history = model.chat(tokenizer, "浙江的省会在哪里?", history=history)
print(response)
response, history = model.chat(tokenizer, "它有什么好玩的景点", history=history)
print(response)
```
### Inférence par lots
Qwen prend en charge l'inférence par lots. Lorsque flash attention est activée, l'utilisation de l'inférence par lots peut entraîner une accélération de 40 %. Le code d'exemple est présenté ci-dessous:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import GenerationConfig
from qwen_generation_utils import make_context, decode_tokens, get_stop_words_ids
Pour déployer nos modèles sur CPU, nous vous conseillons vivement d'utiliser [qwen.cpp](https://github.com/QwenLM/qwen.cpp), qui est une implémentation purement C++ de Qwen et de tiktoken. Consultez le repo pour plus de détails!
Il est simple d'exécuter directement le modèle sur le CPU, ce qui nécessite la spécification de votre appareil:
```python
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="cpu", trust_remote_code=True).eval()
```
Cependant, il est probable que vous souffriez d'une efficacité d'inférence extrêmement faible.
### Plusieurs GPU
Si vous souffrez d'un manque de mémoire GPU et que vous souhaitez exécuter le modèle sur plus d'un GPU, vous pouvez utiliser directement la méthode de chargement par défaut, qui est maintenant supportée par Transformers. La méthode précédente basée sur `utils.py` est obsolète.
Cependant, bien que cette méthode soit simple, l'efficacité du parallélisme natif du pipeline est faible. Nous vous conseillons d'utiliser vLLM avec FastChat et de lire la section relative au déploiement.
Le moyen le plus simple d'utiliser Qwen via les API est le service API DashScope via Alibaba Cloud. Nous présentons une introduction à l'utilisation. De plus, nous fournissons un script pour vous permettre de déployer une API de type OpenAI sur vos propres serveurs.
DashScope est le service API de grands modèles linguistiques fourni par Alibaba Cloud, qui prend désormais en charge Qwen. Notez que les modèles derrière DashScope sont des versions internes temporairement sans détails fournis. Les services comprennent `qwen-turbo` et `qwen-plus`, le premier fonctionnant plus rapidement et le second atteignant de meilleures performances. Pour plus d'informations, consultez la documentation [ici] (https://dashscope.aliyun.com).
Veuillez vous rendre sur le site officiel [lien](https://help.aliyun.com/zh/dashscope/developer-reference/activate-dashscope-and-create-an-api-key?spm=a2c4g.11186623.0.0.6c2774fahtfXdn) pour créer un compte DashScope et obtenir la clé API (AK). Nous recommandons de définir l'AK à l'aide d'une variable d'environnement:
```bash
export DASHSCOPE_API_KEY="YOUR_DASHSCOPE_API_KEY"
```
Installez ensuite les paquets et cliquez sur [ici](https://help.aliyun.com/zh/dashscope/developer-reference/install-dashscope-sdk) pour obtenir la documentation. Si vous utilisez Python, vous pouvez installer DashScope avec pip:
```bash
pip install dashscope
```
Si vous utilisez JAVA SDK, vous pouvez l'installer de cette manière:
Nous proposons une solution basée sur [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ), et publions les modèles quantifiés Int4 et Int8, qui permettent d'obtenir des effets de modèle presque sans perte mais des performances améliorées en termes de coûts de mémoire et de vitesse d'inférence.
Nous démontrons ici comment utiliser les modèles quantifiés que nous fournissons pour l'inférence. Avant de commencer, assurez-vous que vous répondez aux exigences d'auto-gptq (par exemple, torch 2.0 et plus, transformers 4.32.0 et plus, etc.) et installez les paquets requis:
```bash
pip install auto-gptq optimum
```
Si vous rencontrez des problèmes pour installer `auto-gptq`, nous vous conseillons de consulter le [repo](https://github.com/PanQiWei/AutoGPTQ) officiel pour trouver une roue.
> Note : Les paquets `auto-gptq` précompilés dépendent fortement de la version de `torch` et de sa version CUDA. De plus, en raison d'une récente mise à jour,
> vous pouvez aussi rencontrer des erreurs de version non supportée avec `transformers`, `optimum`, ou `peft`.
> Nous recommandons d'utiliser les dernières versions répondant aux exigences suivantes :
Vous pouvez ensuite charger facilement le modèle quantifié et lancer l'inférence comme d'habitude:
```python
# Model names: "Qwen/Qwen-7B-Chat-Int4", "Qwen/Qwen-14B-Chat-Int4"
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen-7B-Chat-Int4",
device_map="auto",
trust_remote_code=True
).eval()
response, history = model.chat(tokenizer, "Hi", history=None)
```
Nous illustrons les performances des modèles BF16, Int8 et Int4 sur le benchmark, et nous constatons que le modèle quantifié ne souffre pas d'une dégradation significative des performances. Les résultats sont présentés ci-dessous:
> NOTE : Veuillez noter qu'en raison du mécanisme interne de Hugging Face, les fichiers de support pour cette fonctionnalité
> (i.e., `cache_autogptq_cuda_256.cpp` et `cache_autogptq_cuda_kernel_245.cu`) peuvent être manquants.
> Veuillez les télécharger manuellement manuellement depuis le Hugging Face Hub et placez-les dans le même dossier que les autres fichiers du module.
Le cache KV de l'attention peut être quantifié et compressé pour le stockage, afin d'obtenir un débit d'échantillonnage plus élevé. Les arguments `use_cache_quantization` et `use_cache_kernel` dans `config.json` sont fournis pour activer la quantification du cache KV.
Attention : Actuellement, la quantification du cache KV et flash attention ne peuvent pas être utilisées en même temps.
Si vous activez la quantification du cache KV et flash attention en même temps (`use_flash_attn=True`, `use_cache_quantization=True`, `use_cache_kernel=True`), `use_flash_attn` est désactivé par défaut (`use_flash_attn=false`).
Nous avons vérifié que l'utilisation du modèle int8-kvcache quantifié ne souffre pas d'une dégradation significative des performances dans l'évaluation en aval. Dans ce qui suit, nous nous concentrons sur le profilage de son empreinte mémoire dans différentes conditions.
Avec la quantification du cache KV, le modèle peut économiser plus de mémoire lorsqu'il génère des séquences plus longues (`sl`, se référant au nombre de jetons générés) à l'étape de l'inférence.
Le modèle avec quantification du cache KV convertira le format de `layer_past` de float à int8, et pendant ce temps le `layer-past` quantifié stockera également les paramètres de quantification.
Si vous souhaitez utiliser l'attention KV qui est quantifiée, vous pouvez utiliser l'opération de déquantification pour reconvertir la clé/valeur int8 au format float comme suit
vous pouvez utiliser l'opération de déquantification pour reconvertir la clé/valeur int8 au format float comme suit:
Cette section fournit les statistiques de vitesse et de mémoire des modèles dans différentes précisions. Le profilage de la vitesse et de la mémoire est effectué à l'aide de [ce script] (https://qianwen-res.oss-cn-beijing.aliyuncs.com/profile.py).
Nous avons mesuré la vitesse moyenne d'inférence (tokens/s) et l'utilisation de la mémoire GPU pour générer 2048 avec les modèles en BF16, Int8 et Int4.
Le profilage s'exécute sur un seul GPU A100-SXM4-80G (sauf si 2xA100 est mentionné) avec PyTorch 2.0.1, CUDA 11.8, et Flash-Attention 2. (72B + vLLM utilise PyTorch 2.1.0 et Cuda 11.8.) La vitesse d'inférence est calculée en moyenne sur les tokens encodés et générés.
Note : La vitesse de génération des modèles Int4/Int8 mentionnés ci-dessus est fournie par la bibliothèque autogptq. La vitesse actuelle du modèle chargé en utilisant ``AutoModelForCausalLM.from_pretrained`` sera environ 20% plus lente. Nous avons signalé ce problème à l'équipe HuggingFace et nous le mettrons à jour rapidement si une solution est disponible.
Nous mesurons également la vitesse d'inférence et l'utilisation de la mémoire du GPU avec différents paramètres de contexte et de longueur de génération, version Flash-Attention. Vous pouvez trouver les résultats dans les cartes modèles correspondantes sur Hugging Face ou ModelScope.
Nous fournissons maintenant le script d'entraînement officiel, `finetune.py`, pour que les utilisateurs puissent ajuster le modèle pré-entraîné pour les applications en aval de manière simple. De plus, nous fournissons des scripts shell pour lancer le finetune sans soucis. Ce script prend en charge l'entraînement avec [DeepSpeed](https://github.com/microsoft/DeepSpeed) et [FSDP](https://engineering.fb.com/2021/07/15/open-source/fsdp/). Les scripts que nous fournissons utilisent DeepSpeed (Note : il peut y avoir des conflits avec la dernière version de pydantic et vous devriez utiliser make sure `pydantic<2.0`) et Peft. Vous pouvez les installer en procédant comme suit :
Pour préparer vos données d'entraînement, vous devez rassembler tous les échantillons dans une liste et l'enregistrer dans un fichier json. Chaque échantillon est un dictionnaire composé d'un identifiant et d'une liste de conversation. Voici un exemple simple de liste avec 1 échantillon :
Après la préparation des données, vous pouvez utiliser les scripts shell fournis pour lancer le finetuning. N'oubliez pas de spécifier le chemin d'accès au fichier de données, `$DATA`.
Les scripts de finetuning vous permettent d'effectuer les opérations suivantes
- Finetuning de tous les paramètres
- LoRA
- Q-LoRA
Le finetuning de tous les paramètres nécessite la mise à jour de tous les paramètres au cours de l'ensemble du processus de formation. Pour lancer votre formation, exécutez le script suivant:
```bash
# Distributed training. We do not provide single-GPU training script as the insufficient GPU memory will break down the training.
sh finetune/finetune_ds.sh
```
N'oubliez pas de spécifier le nom ou le chemin d'accès au modèle, le chemin d'accès aux données, ainsi que le répertoire de sortie dans les scripts shell. Une autre chose à noter est que nous utilisons DeepSpeed ZeRO 3 dans ce script. Si vous voulez faire des changements, il suffit de supprimer l'argument `--deepspeed` ou de faire des changements dans le fichier json de configuration de DeepSpeed en fonction de vos besoins. De plus, ce script supporte l'entraînement en précision mixte, et donc vous pouvez utiliser `--bf16 True` ou `--fp16 True`. N'oubliez pas d'utiliser DeepSpeed lorsque vous utilisez fp16 en raison de l'entraînement de précision mixte. Empiriquement, nous vous conseillons d'utiliser bf16 pour rendre votre apprentissage cohérent avec notre pré-entraînement et notre alignement si votre machine supporte bf16, et nous l'utilisons donc par défaut.
Pour exécuter LoRA, utilisez un autre script à exécuter comme indiqué ci-dessous. Avant de commencer, assurez-vous que vous avez installé `peft`. Vous devez spécifier les chemins d'accès à votre modèle, à vos données et à vos résultats. Nous vous conseillons d'utiliser des chemins absolus pour votre modèle pré-entraîné. En effet, LoRA ne sauvegarde que l'adaptateur et le chemin absolu dans le fichier json de configuration de l'adaptateur est utilisé pour trouver le modèle pré-entraîné à charger. De plus, ce script supporte à la fois bf16 et fp16.
```bash
# Single GPU training
sh finetune/finetune_lora_single_gpu.sh
# Distributed training
sh finetune/finetune_lora_ds.sh
```
Par rapport au finetuning de tous les paramètres, LoRA ([paper](https://arxiv.org/abs/2106.09685)) ne met à jour que les paramètres des couches d'adaptateurs, tout en gelant les couches originales du grand modèle de langage. Cela permet de réduire considérablement les coûts de mémoire et donc les coûts de calcul.
Notez que si vous utilisez LoRA pour affiner le modèle linguistique de base, par exemple Qwen-7B, au lieu des modèles de chat, par exemple Qwen-7B-Chat, le script change automatiquement l'intégration et la couche de sortie en tant que paramètres entraînables. En effet, le modèle linguistique de base n'a aucune connaissance des jetons spéciaux apportés par le format ChatML. Ces couches doivent donc être mises à jour pour que le modèle comprenne et prédise les jetons. En d'autres termes, si votre formation apporte des tokens spéciaux dans LoRA, vous devez définir les couches comme des paramètres entraînables en définissant `modules_to_save` à l'intérieur du code. De plus, si ces paramètres sont entraînables, il n'est pas possible d'utiliser ZeRO 3, et c'est pourquoi nous utilisons ZeRO 2 par défaut dans le script. Si vous n'avez pas de nouveaux paramètres entraînables, vous pouvez passer à ZeRO 3 en modifiant le fichier de configuration de DeepSpeed. En outre, nous constatons qu'il existe un écart important entre l'empreinte mémoire de LoRA avec et sans ces paramètres d'entraînement. Par conséquent, si vous avez des problèmes de mémoire, nous vous conseillons d'affiner les modèles de chat de LoRA. Consultez le profil ci-dessous pour plus d'informations.
Si vous souffrez toujours d'un manque de mémoire, vous pouvez envisager Q-LoRA ([paper](https://arxiv.org/abs/2305.14314)), qui utilise le modèle de langage quantifié et d'autres techniques telles que l'attention paginée pour réduire encore les coûts de mémoire.
Note : pour exécuter l'entraînement Q-LoRA sur un seul GPU, vous pouvez avoir besoin d'installer `mpi4py` via `pip` ou `conda`.
Pour Q-LoRA, nous vous conseillons de charger le modèle quantifié que nous fournissons, par exemple Qwen-7B-Chat-Int4. Vous **NE DEVRIEZ PAS** utiliser les modèles bf16. Contrairement au finetuning de tous les paramètres et à la LoRA, seul le modèle fp16 est pris en charge pour la Q-LoRA. Pour l'entraînement sur un seul GPU, nous devons utiliser DeepSpeed pour l'entraînement en précision mixte en raison de notre observation des erreurs causées par torch amp. En outre, pour Q-LoRA, les problèmes avec les jetons spéciaux dans LoRA existent toujours. Cependant, comme nous ne fournissons que les modèles Int4 pour les modèles de chat, ce qui signifie que le modèle de langage a appris les tokens spéciaux du format ChatML, vous n'avez pas à vous soucier des couches. Notez que les couches du modèle Int4 ne doivent pas être entraînables, et donc si vous introduisez des tokens spéciaux dans votre entraînement, Q-LoRA risque de ne pas fonctionner.
> NOTE : Veuillez noter qu'en raison des mécanismes internes de Hugging Face, certains fichiers non-Python (par exemple, `*.cpp` et `*.cu`)
> peuvent être absents du point de contrôle sauvegardé. Vous devrez peut-être les copier manuellement dans le répertoire contenant les autres fichiers.
Contrairement au finetuning des paramètres complets, l'entraînement de LoRA et de Q-LoRA n'enregistre que les paramètres de l'adaptateur. Supposons que votre entraînement commence à partir de Qwen-7B, vous pouvez charger le modèle finalisé pour l'inférence comme indiqué ci-dessous:
Si vous souhaitez fusionner les adaptateurs et enregistrer le modèle affiné en tant que modèle autonome (vous ne pouvez le faire qu'avec LoRA, et vous **NE POUVEZ PAS** fusionner les paramètres de Q-LoRA), vous pouvez exécuter les codes suivants :
Note : Pour l'entraînement multi-GPU, vous devez spécifier les hyperparamètres appropriés pour l'entraînement distribué en fonction de votre machine. De plus, nous vous conseillons de spécifier votre longueur maximale de séquence avec l'argument `--model_max_length`, en fonction de votre considération des données, de l'empreinte mémoire, et de la vitesse d'apprentissage.
Nous profilons la mémoire du GPU et la vitesse d'apprentissage de LoRA (LoRA (emb) se réfère à l'apprentissage de la couche d'intégration et de sortie, tandis que LoRA n'a pas de couche d'intégration et de sortie pouvant être entraînée) et de Q-LoRA dans la configuration de l'apprentissage sur un seul GPU. Dans ce test, nous expérimentons sur un seul GPU A100-SXM4-80G, et nous utilisons CUDA 11.8 et Pytorch 2.0. Flash attention 2 est appliqué. Nous utilisons uniformément une taille de lot de 1 et une accumulation de gradient de 8. Nous profilons la mémoire (GB) et la vitesse (s/iter) des entrées de différentes longueurs, à savoir 256, 512, 1024, 2048, 4096, et 8192. Nous présentons également les statistiques du réglage fin de tous les paramètres avec Qwen-7B sur 2 GPU A100. Nous ne présentons que les statistiques de 256, 512 et 1024 jetons en raison de la limitation de la mémoire du GPU.
Pour Qwen-72B, nous expérimentons de deux manières : 1) Lora fintuning + DeepSpeed ZeRO 3 sur 4 GPU A100-SXM4-80G et 2) QLora (int4) fintuning sur un seul GPU A100-SXM4-80G. Notez que l'OOM se produit sur 4 GPUs A100-SXM4-80G à la fois avec le réglage fin LoRA (emb) et le réglage fin LoRA sans Deepspeed ZeRO 3 (vous pouvez passer `--deepspeed finetune/ds_config_zero3.json` à [`finetune/finetune_lora_ds.sh`](finetune/finetune_lora_ds.sh) afin d'activer DeepSpeed ZeRO 3).
Ou vous pouvez les installer à partir des sources par `git clone` et `pip install -e .`. Nous vous conseillons de lire leurs documents si vous rencontrez des problèmes lors de l'installation.
Pour faire fonctionner Qwen avec vLLM et FastChat, vous devez d'abord lancer un contrôleur par:
Ensuite, vous pouvez lancer le travailleur de modèle, ce qui signifie charger votre modèle pour l'inférence. Pour l'inférence sur un seul GPU, vous pouvez directement lancer:
Cependant, si vous souhaitez exécuter le modèle sur plusieurs GPU pour une inférence plus rapide ou une mémoire plus importante, vous pouvez utiliser le parallélisme tensoriel pris en charge par vLLM. Supposons que vous exécutiez le modèle sur 4 GPU, la commande est présentée ci-dessous:
Cependant, si vous avez des difficultés à utiliser vLLM et FastChat, vous pouvez essayer nos méthodes les plus simples pour déployer une démo web, une démo CLI et une API.
Nous fournissons du code pour que les utilisateurs puissent construire une démo d'interface web (merci à @wysaid). Avant de commencer, assurez-vous d'installer les paquets suivants:
```
pip install -r requirements_web_demo.txt
```
Exécutez ensuite la commande ci-dessous et cliquez sur le lien généré:
```bash
python web_demo.py
```
<palign="center">
<br>
<imgsrc="assets/web_demo.gif"width="600"/>
<br>
<p>
### Démo CLI
Nous fournissons un exemple de démonstration CLI dans `cli_demo.py`, qui prend en charge la sortie en continu pour la génération. Les utilisateurs peuvent interagir avec Qwen-7B-Chat en saisissant des invites, et le modèle renvoie les sorties du modèle en mode streaming. Exécutez la commande ci-dessous:
Nous fournissons des méthodes pour déployer une API locale basée sur l'API OpenAI (merci à @hanpenggit). Avant de commencer, installez les paquets nécessaires:
Exécutez ensuite la commande pour déployer votre API:
```bash
python openai_api.py
```
Vous pouvez modifier vos arguments, par exemple, `-c` pour le nom ou le chemin du poids, `--cpu-only` pour le déploiement CPU, etc. Si vous rencontrez des problèmes lors du lancement du déploiement de l'API, la mise à jour des paquets vers la dernière version peut probablement les résoudre.
L'utilisation de l'API est simple. Voir l'exemple ci-dessous:
```python
import openai
openai.api_base = "http://localhost:8000/v1"
openai.api_key = "none"
# create a request activating streaming response
for chunk in openai.ChatCompletion.create(
model="Qwen",
messages=[
{"role": "user", "content": "你好"}
],
stream=True
# Specifying stop words in streaming output format is not yet supported and is under development.
# create a request not activating streaming response
response = openai.ChatCompletion.create(
model="Qwen",
messages=[
{"role": "user", "content": "你好"}
],
stream=False,
stop=[] # You can add custom stop words here, e.g., stop=["Observation:"] for ReAct prompting.
)
print(response.choices[0].message.content)
```
<palign="center">
<br>
<imgsrc="assets/openai_api.gif"width="600"/>
<br>
<p>
**Function calling** est aussi supporté (mais seulement quand `stream=False` pour le moment). Voir [l'exemple d'utilisation](examples/function_call_examples.py) ici.
Pour simplifier le processus de déploiement, nous fournissons des images docker avec des environnements préconstruits : [qwenllm/qwen] (https://hub.docker.com/r/qwenllm/qwen). Il vous suffit d'installer le pilote et de télécharger les fichiers de modèle pour lancer les démonstrations, déployer l'API OpenAI et affiner le modèle.
### Préparation
1. Installez la version correcte du pilote Nvidia en fonction de l'image à utiliser :
-`qwenllm/qwen:latest`: même que `qwenllm/qwen:cu117`
2. Installer et configurer [docker](https://docs.docker.com/engine/install/) et [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) :
# test if nvidia-container-toolkit is correctly installed
sudo docker run --rm --runtime=nvidia --gpus all ubuntu nvidia-smi
```
3. Téléchargez les checkpoints et les codes du modèle dans votre environnement (voir [ici](#DownloadModel)).
### Déploiement
Nous utilisons ici Qwen-7B-Chat comme exemple. Avant de lancer une démo web ou une API, vous pouvez établir la configuration comme indiqué ci-dessous :
```bash
IMAGE_NAME=qwenllm/qwen:cu117
PORT=8901
CHECKPOINT_PATH=/path/to/Qwen-7B-Chat # Path to downloaded model checkpoints and codes
```
Les scripts suivants peuvent vous aider à construire :
Les commandes ci-dessus téléchargeront automatiquement l'image requise et lanceront une démo d'interface Web en arrière-plan (le service redémarrera automatiquement). Vous pouvez ouvrir `http://localhost:${PORT}` sur l'hôte pour utiliser la démo.
La démo est lancée avec succès si vous obtenez le résultat suivant :
```text
Successfully started web demo. Open '...' to try!
Run `docker logs ...` to check demo status.
Run `docker rm -f ...` to stop and remove the demo.
```
Si vous voulez vérifier le statut de la démo, vous pouvez utiliser `docker logs qwen` pour afficher les résultats.
Vous pouvez utiliser `docker rm -f qwen` pour arrêter le service et supprimer le conteneur.
### Finetuning
La méthode de finetuning utilisant l'image Docker préconstruite est fondamentalement la même que [le chapitre ci-dessus](#Finetuning) (nous avons déjà installé les dépendances dans l'image) :
Voici un exemple de LoRA à une seule GPU :
```bash
IMAGE_NAME=qwenllm/qwen:cu117
CHECKPOINT_PATH=/path/to/Qwen-7B # Path to downloaded model checkpoints and codes
#CHECKPOINT_PATH=/path/to/Qwen-7B-Chat-Int4 # Path to downloaded model checkpoints and codes (Q-LoRA)
DATA_PATH=/path/to/data/root # Prepare finetune data at ${DATA_PATH}/example.json
OUTPUT_PATH=/path/to/output/checkpoint # Path to finetune outputs
# Use all host devices by default
DEVICE=all
# If you need to specify GPUs for training, set device as follow (NOTE: internal quotation marks cannot be omitted)
Qwen-1.8-Chat et Qwen-72B-Chat ont été entièrement formés à diverses invites de système avec plusieurs séries d'interactions complexes, de sorte qu'ils peuvent suivre une variété d'invites de système et réaliser la personnalisation du modèle dans le contexte, améliorant ainsi l'évolutivité de Qwen-chat.
Grâce aux messages-guides du système, Qwen-Chat peut **jouer avec enthousiasme**, **transférer le style de langage**, **fixer des tâches** et **fixer des comportements**.
![](assets/system_prompt_language_style.png)
![](assets/system_prompt_role_play_en.png)
Pour plus d'informations, veuillez vous référer à la [documentation d'exemple](examples/system_prompt.md).
Qwen-Chat a été optimisé pour l'utilisation d'outils et les capacités d'appel de fonctions. Les utilisateurs peuvent développer des agents, des applications LangChain, et même augmenter Qwen avec un Code Interpreter.
Nous fournissons une documentation sur la manière d'implémenter les appels d'outils basés sur le principe de ReAct Prompting, veuillez vous référer à [l'exemple ReAct](examples/react_prompt.md). Sur la base de ce principe, nous fournissons un support pour function calling dans [openai_api.py](openai_api.py).
Nous avons testé les capacités d'appel d'outil du modèle sur notre benchmark d'évaluation chinois à source ouverte et nous avons constaté que Qwen-Chat obtient systématiquement de bons résultats:
Pour évaluer la capacité de Qwen à utiliser l'interpréteur de code Python pour des tâches telles que la résolution de problèmes mathématiques, la visualisation de données et d'autres tâches générales telles que la manipulation de fichiers et l'exploration du Web, nous avons créé et mis en libre accès un test de référence spécialement conçu pour évaluer ces capacités. Vous pouvez trouver le benchmark sur ce [lien](https://github.com/QwenLM/Qwen-Agent/tree/main/benchmark).
Nous avons observé que Qwen est performant en termes d'exécutabilité du code et de précision des résultats lors de la génération du code:
<table>
<tr>
<thcolspan="4"align="center">Executable Rate of Generated Code (%)</th>
En outre, nous fournissons également des résultats expérimentaux démontrant que notre modèle est capable d'agir en tant qu'agent Hugging Face. Pour plus d'informations, veuillez vous référer à la [documentation de l'exemple](examples/transformers_agent.md). Les performances du modèle sur l'ensemble des données d'évaluation fournies par Hugging Face sont les suivantes:
<table>
<tr>
<thcolspan="4"align="center">HuggingFace Agent Benchmark- Run Mode</th>
Pour augmenter la longueur du contexte et éliminer le goulot d'étranglement que constitue la longueur de la séquence d'entraînement, nous introduisons plusieurs techniques, notamment l'interpolation tenant compte des NTK, l'attention par fenêtre et la mise à l'échelle de l'attention LogN, afin d'augmenter la longueur du contexte de Qwen-14B de 2K à plus de 8K tokens, et de Qwen-1.8B/7B de 8K à 32K tokens.
Pour Qwen-72B, nous adaptons RoPE à des contextes plus longs avec une base rotative plus importante. Qwen-72B prend en charge la longueur de contexte maximale de 32K tokens.
Nous menons des expériences de modélisation du langage sur l'ensemble de données arXiv avec l'évaluation PPL et nous constatons que Qwen peut atteindre des performances exceptionnelles dans le scénario d'un contexte long. Les résultats sont présentés ci-dessous :
En outre, pour vérifier la capacité de Qwen-72B-Chat à comprendre des textes longs, nous l'avons testé sur [L-Eval] (https://arxiv.org/abs/2307.11088) (tâches fermées). Les résultats sont les suivants :
| Model | Input Length | Average | Coursera | GSM | QuALITY | TOEFL | CodeU | SFcition |
Nous avons réalisé l'expérience de "l'aiguille dans une botte de foin" (l'idée vient de [@Greg Kamradt](https://twitter.com/GregKamradt/status/1727018183608193393)) pour tester si le modèle peut récupérer des informations à différentes positions dans les entrées de différentes longueurs, le résultat est le suivant :
![](assets/qwen_72b_needle_in_a_haystack.png)
Les résultats ci-dessus montrent que Qwen-72B-Chat peut récupérer avec précision des informations placées dans différentes positions dans une longueur d'entrée de 32K, ce qui prouve ses excellentes capacités de compréhension de textes longs.
Notre tokenizer basé sur tiktoken est différent des autres tokenizers, par exemple le tokenizer sentencepiece. Vous devez faire attention aux tokens spéciaux, en particulier lors de la mise au point. Pour des informations plus détaillées sur le tokenizer et son utilisation dans le cadre du finetuning, veuillez vous référer à la [documentation](tokenization_note.md).
<br><br>
## Reproduction
Pour reproduire les performances du modèle sur des ensembles de données de référence, nous fournissons des scripts permettant de reproduire les résultats. Consultez [eval/EVALUATION.md](eval/EVALUATION.md) pour plus d'informations. Notez que la reproduction peut entraîner de légères différences par rapport à nos résultats.
<br><br>
## FAQ
Si vous rencontrez des problèmes, veuillez vous référer à la [FAQ](FAQ.md) et aux problèmes pour trouver une solution avant de lancer un nouveau problème.
<br><br>
## Citation
Si vous trouvez notre travail utile, n'hésitez pas à nous citer.
```
@article{qwen,
title={Qwen Technical Report},
author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu},
Le code source fourni à l'adresse <https://github.com/QwenLM/Qwen> est soumis à la licence [Apache 2.0 License](./LICENSE) qui se trouve dans le répertoire racine.
Les chercheurs et les développeurs sont libres d'utiliser les codes et les poids des modèles de Qwen et de Qwen-Chat. Pour leur utilisation commerciale, veuillez consulter l'accord de licence accompagnant chaque modèle.
- Qwen-72B, Qwen-14B et Qwen-7B sont sous licence [Tongyi Qianwen LICENSE AGREEMENT](./Tongyi%20Qianwen%20LICENSE%20AGREEMENT) que l'on peut trouver dans les dépôts HuggingFace et ModelScope correspondants. Pour une utilisation commerciale, veuillez remplir le formulaire ([72B](https://dashscope.console.aliyun.com/openModelApply/Qwen-72B-Chat), [14B](https://dashscope.console.aliyun.com/openModelApply/Qwen-14B-Chat), et [7B](https://dashscope.console.aliyun.com/openModelApply/qianwen)) pour en faire la demande.
- Qwen-1.8B est sous licence [Tongyi Qianwen RESEARCH LICENSE AGREEMENT](./Tongyi%20Qianwen%20RESEARCH%20LICENSE%20AGREEMENT) qui peut être trouvé dans les dépôts HuggingFace et ModelScope correspondants. Pour une utilisation commerciale, veuillez nous contacter.
Si vous souhaitez laisser un message à notre équipe de recherche ou à notre équipe produit, rejoignez nos groupes Discord ou WeChat! N'hésitez pas non plus à envoyer un courriel à qianwen_opensource@alibabacloud.com.