|
|
|
|
#
|
|
|
|
|
# 相关材料:
|
|
|
|
|
# ReAct Prompting 原理简要介绍,不包含代码实现:
|
|
|
|
|
# https://github.com/QwenLM/Qwen-7B/blob/main/examples/react_prompt.md
|
|
|
|
|
# 基于 model.chat 接口(对话模式)的 ReAct Prompting 实现(含接入 LangChain 的工具实现):
|
|
|
|
|
# https://github.com/QwenLM/Qwen-7B/blob/main/examples/langchain_tooluse.ipynb
|
|
|
|
|
# 基于 model.generate 接口(续写模式)的 ReAct Prompting 实现,比 chat 模式的实现更复杂些:
|
|
|
|
|
# https://github.com/QwenLM/Qwen-7B/blob/main/examples/react_demo.py(本文件)
|
|
|
|
|
#
|
|
|
|
|
|
|
|
|
|
import json
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
|
|
import json5
|
|
|
|
|
import torch
|
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
from transformers.generation import GenerationConfig
|
|
|
|
|
|
|
|
|
|
for _ in range(10): # 网络不稳定,多试几次
|
|
|
|
|
try:
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
|
|
|
|
|
generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
"Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True
|
|
|
|
|
).eval()
|
|
|
|
|
model.generation_config = generation_config
|
|
|
|
|
model.generation_config.do_sample = False
|
|
|
|
|
break
|
|
|
|
|
except Exception:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
# 将一个插件的关键信息拼接成一段文本的模版。
|
|
|
|
|
TOOL_DESC = """{name_for_model}: Call this tool to interact with the {name_for_human} API. What is the {name_for_human} API useful for? {description_for_model} Parameters: {parameters}"""
|
|
|
|
|
|
|
|
|
|
# ReAct prompting 的 instruction 模版,将包含插件的详细信息。
|
|
|
|
|
PROMPT_REACT = """Answer the following questions as best you can. You have access to the following tools:
|
|
|
|
|
|
|
|
|
|
{tools_text}
|
|
|
|
|
|
|
|
|
|
Use the following format:
|
|
|
|
|
|
|
|
|
|
Question: the input question you must answer
|
|
|
|
|
Thought: you should always think about what to do
|
|
|
|
|
Action: the action to take, should be one of [{tools_name_text}]
|
|
|
|
|
Action Input: the input to the action
|
|
|
|
|
Observation: the result of the action
|
|
|
|
|
... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
|
|
|
|
|
Thought: I now know the final answer
|
|
|
|
|
Final Answer: the final answer to the original input question
|
|
|
|
|
|
|
|
|
|
Begin!
|
|
|
|
|
|
|
|
|
|
Question: {query}"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#
|
|
|
|
|
# 本示例代码的入口函数。
|
|
|
|
|
#
|
|
|
|
|
# 输入:
|
|
|
|
|
# prompt: 用户的最新一个问题。
|
|
|
|
|
# history: 用户与模型的对话历史,是一个 list,
|
|
|
|
|
# list 中的每个元素为 {"user": "用户输入", "bot": "模型输出"} 的一轮对话。
|
|
|
|
|
# 最新的一轮对话放 list 末尾。不包含最新一个问题。
|
|
|
|
|
# list_of_plugin_info: 候选插件列表,是一个 list,list 中的每个元素为一个插件的关键信息。
|
|
|
|
|
# 比如 list_of_plugin_info = [plugin_info_0, plugin_info_1, plugin_info_2],
|
|
|
|
|
# 其中 plugin_info_0, plugin_info_1, plugin_info_2 这几个样例见本文档前文。
|
|
|
|
|
#
|
|
|
|
|
# 输出:
|
|
|
|
|
# 模型对用户最新一个问题的回答。
|
|
|
|
|
#
|
|
|
|
|
def llm_with_plugin(prompt: str, history, list_of_plugin_info=()):
|
|
|
|
|
chat_history = [(x['user'], x['bot']) for x in history] + [(prompt, '')]
|
|
|
|
|
|
|
|
|
|
# 需要让模型进行续写的初始文本
|
|
|
|
|
planning_prompt = build_input_text(chat_history, list_of_plugin_info)
|
|
|
|
|
|
|
|
|
|
text = ''
|
|
|
|
|
while True:
|
|
|
|
|
output = text_completion(planning_prompt + text, stop_words=['Observation:', 'Observation:\n'])
|
|
|
|
|
action, action_input, output = parse_latest_plugin_call(output)
|
|
|
|
|
if action: # 需要调用插件
|
|
|
|
|
# action、action_input 分别为需要调用的插件代号、输入参数
|
|
|
|
|
# observation是插件返回的结果,为字符串
|
|
|
|
|
observation = call_plugin(action, action_input)
|
|
|
|
|
output += f'\nObservation: {observation}\nThought:'
|
|
|
|
|
text += output
|
|
|
|
|
else: # 生成结束,并且不再需要调用插件
|
|
|
|
|
text += output
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
new_history = []
|
|
|
|
|
new_history.extend(history)
|
|
|
|
|
new_history.append({'user': prompt, 'bot': text})
|
|
|
|
|
return text, new_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 将对话历史、插件信息聚合成一段初始文本
|
|
|
|
|
def build_input_text(chat_history, list_of_plugin_info) -> str:
|
|
|
|
|
# 候选插件的详细信息
|
|
|
|
|
tools_text = []
|
|
|
|
|
for plugin_info in list_of_plugin_info:
|
|
|
|
|
tool = TOOL_DESC.format(
|
|
|
|
|
name_for_model=plugin_info["name_for_model"],
|
|
|
|
|
name_for_human=plugin_info["name_for_human"],
|
|
|
|
|
description_for_model=plugin_info["description_for_model"],
|
|
|
|
|
parameters=json.dumps(plugin_info["parameters"], ensure_ascii=False),
|
|
|
|
|
)
|
|
|
|
|
if plugin_info.get('args_format', 'json') == 'json':
|
|
|
|
|
tool += " Format the arguments as a JSON object."
|
|
|
|
|
elif plugin_info['args_format'] == 'code':
|
|
|
|
|
tool += ' Enclose the code within triple backticks (`) at the beginning and end of the code.'
|
|
|
|
|
else:
|
|
|
|
|
raise NotImplementedError
|
|
|
|
|
tools_text.append(tool)
|
|
|
|
|
tools_text = '\n\n'.join(tools_text)
|
|
|
|
|
|
|
|
|
|
# 候选插件的代号
|
|
|
|
|
tools_name_text = ', '.join([plugin_info["name_for_model"] for plugin_info in list_of_plugin_info])
|
|
|
|
|
|
|
|
|
|
im_start = '<|im_start|>'
|
|
|
|
|
im_end = '<|im_end|>'
|
|
|
|
|
prompt = f'{im_start}system\nYou are a helpful assistant.{im_end}'
|
|
|
|
|
for i, (query, response) in enumerate(chat_history):
|
|
|
|
|
if list_of_plugin_info: # 如果有候选插件
|
|
|
|
|
# 倒数第一轮或倒数第二轮对话填入详细的插件信息,但具体什么位置填可以自行判断
|
|
|
|
|
if (len(chat_history) == 1) or (i == len(chat_history) - 2):
|
|
|
|
|
query = PROMPT_REACT.format(
|
|
|
|
|
tools_text=tools_text,
|
|
|
|
|
tools_name_text=tools_name_text,
|
|
|
|
|
query=query,
|
|
|
|
|
)
|
|
|
|
|
query = query.lstrip('\n').rstrip() # 重要!若不 strip 会与训练时数据的构造方式产生差异。
|
|
|
|
|
response = response.lstrip('\n').rstrip() # 重要!若不 strip 会与训练时数据的构造方式产生差异。
|
|
|
|
|
# 使用续写模式(text completion)时,需要用如下格式区分用户和AI:
|
|
|
|
|
prompt += f"\n{im_start}user\n{query}{im_end}"
|
|
|
|
|
prompt += f"\n{im_start}assistant\n{response}{im_end}"
|
|
|
|
|
|
|
|
|
|
assert prompt.endswith(f"\n{im_start}assistant\n{im_end}")
|
|
|
|
|
prompt = prompt[: -len(f'{im_end}')]
|
|
|
|
|
return prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def text_completion(input_text: str, stop_words) -> str: # 作为一个文本续写模型来使用
|
|
|
|
|
im_end = '<|im_end|>'
|
|
|
|
|
if im_end not in stop_words:
|
|
|
|
|
stop_words = stop_words + [im_end]
|
|
|
|
|
stop_words_ids = [tokenizer.encode(w) for w in stop_words]
|
|
|
|
|
|
|
|
|
|
# TODO: 增加流式输出的样例实现
|
|
|
|
|
input_ids = torch.tensor([tokenizer.encode(input_text)]).to(model.device)
|
|
|
|
|
output = model.generate(input_ids, stop_words_ids=stop_words_ids)
|
|
|
|
|
output = output.tolist()[0]
|
|
|
|
|
output = tokenizer.decode(output, errors="ignore")
|
|
|
|
|
assert output.startswith(input_text)
|
|
|
|
|
output = output[len(input_text) :].replace('<|endoftext|>', '').replace(im_end, '')
|
|
|
|
|
|
|
|
|
|
for stop_str in stop_words:
|
|
|
|
|
idx = output.find(stop_str)
|
|
|
|
|
if idx != -1:
|
|
|
|
|
output = output[: idx + len(stop_str)]
|
|
|
|
|
return output # 续写 input_text 的结果,不包含 input_text 的内容
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def parse_latest_plugin_call(text):
|
|
|
|
|
plugin_name, plugin_args = '', ''
|
|
|
|
|
i = text.rfind('\nAction:')
|
|
|
|
|
j = text.rfind('\nAction Input:')
|
|
|
|
|
k = text.rfind('\nObservation:')
|
|
|
|
|
if 0 <= i < j: # If the text has `Action` and `Action input`,
|
|
|
|
|
if k < j: # but does not contain `Observation`,
|
|
|
|
|
# then it is likely that `Observation` is ommited by the LLM,
|
|
|
|
|
# because the output text may have discarded the stop word.
|
|
|
|
|
text = text.rstrip() + '\nObservation:' # Add it back.
|
|
|
|
|
k = text.rfind('\nObservation:')
|
|
|
|
|
plugin_name = text[i + len('\nAction:') : j].strip()
|
|
|
|
|
plugin_args = text[j + len('\nAction Input:') : k].strip()
|
|
|
|
|
text = text[:k]
|
|
|
|
|
return plugin_name, plugin_args, text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#
|
|
|
|
|
# 输入:
|
|
|
|
|
# plugin_name: 需要调用的插件代号,对应 name_for_model。
|
|
|
|
|
# plugin_args:插件的输入参数,是一个 dict,dict 的 key、value 分别为参数名、参数值。
|
|
|
|
|
# 输出:
|
|
|
|
|
# 插件的返回结果,需要是字符串。
|
|
|
|
|
# 即使原本是 JSON 输出,也请 json.dumps(..., ensure_ascii=False) 成字符串。
|
|
|
|
|
#
|
|
|
|
|
def call_plugin(plugin_name: str, plugin_args: str) -> str:
|
|
|
|
|
#
|
|
|
|
|
# 请开发者自行完善这部分内容。这里的参考实现仅是 demo 用途,非生产用途。
|
|
|
|
|
#
|
|
|
|
|
if plugin_name == 'google_search':
|
|
|
|
|
# 使用 SerpAPI 需要在这里填入您的 SERPAPI_API_KEY!
|
|
|
|
|
os.environ["SERPAPI_API_KEY"] = os.getenv("SERPAPI_API_KEY", default='')
|
|
|
|
|
from langchain import SerpAPIWrapper
|
|
|
|
|
|
|
|
|
|
return SerpAPIWrapper().run(json5.loads(plugin_args)['search_query'])
|
|
|
|
|
elif plugin_name == 'image_gen':
|
|
|
|
|
import urllib.parse
|
|
|
|
|
|
|
|
|
|
prompt = json5.loads(plugin_args)["prompt"]
|
|
|
|
|
prompt = urllib.parse.quote(prompt)
|
|
|
|
|
return json.dumps({'image_url': f'https://image.pollinations.ai/prompt/{prompt}'}, ensure_ascii=False)
|
|
|
|
|
else:
|
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test():
|
|
|
|
|
tools = [
|
|
|
|
|
{
|
|
|
|
|
'name_for_human': '谷歌搜索',
|
|
|
|
|
'name_for_model': 'google_search',
|
|
|
|
|
'description_for_model': '谷歌搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。',
|
|
|
|
|
'parameters': [
|
|
|
|
|
{
|
|
|
|
|
'name': 'search_query',
|
|
|
|
|
'description': '搜索关键词或短语',
|
|
|
|
|
'required': True,
|
|
|
|
|
'schema': {'type': 'string'},
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
'name_for_human': '文生图',
|
|
|
|
|
'name_for_model': 'image_gen',
|
|
|
|
|
'description_for_model': '文生图是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL',
|
|
|
|
|
'parameters': [
|
|
|
|
|
{
|
|
|
|
|
'name': 'prompt',
|
|
|
|
|
'description': '英文关键词,描述了希望图像具有什么内容',
|
|
|
|
|
'required': True,
|
|
|
|
|
'schema': {'type': 'string'},
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
},
|
|
|
|
|
]
|
|
|
|
|
history = []
|
|
|
|
|
for query in ['你好', '谁是周杰伦', '他老婆是谁', '给我画个可爱的小猫吧,最好是黑猫']:
|
|
|
|
|
print(f"User's Query:\n{query}\n")
|
|
|
|
|
response, history = llm_with_plugin(prompt=query, history=history, list_of_plugin_info=tools)
|
|
|
|
|
print(f"Qwen's Response:\n{response}\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
test()
|
|
|
|
|
|
|
|
|
|
"""如果执行成功,在终端下应当能看到如下输出:
|
|
|
|
|
User's Query:
|
|
|
|
|
你好
|
|
|
|
|
|
|
|
|
|
Qwen's Response:
|
|
|
|
|
Thought: 提供的工具对回答该问题帮助较小,我将不使用工具直接作答。
|
|
|
|
|
Final Answer: 你好!很高兴见到你。有什么我可以帮忙的吗?
|
|
|
|
|
|
|
|
|
|
User's Query:
|
|
|
|
|
谁是周杰伦
|
|
|
|
|
|
|
|
|
|
Qwen's Response:
|
|
|
|
|
Thought: 我应该使用Google搜索查找相关信息。
|
|
|
|
|
Action: google_search
|
|
|
|
|
Action Input: {"search_query": "周杰伦"}
|
|
|
|
|
Observation: Jay Chou is a Taiwanese singer, songwriter, record producer, rapper, actor, television personality, and businessman.
|
|
|
|
|
Thought: I now know the final answer.
|
|
|
|
|
Final Answer: 周杰伦(Jay Chou)是一位来自台湾的歌手、词曲创作人、音乐制作人、说唱歌手、演员、电视节目主持人和企业家。他以其独特的音乐风格和才华在华语乐坛享有很高的声誉。
|
|
|
|
|
|
|
|
|
|
User's Query:
|
|
|
|
|
他老婆是谁
|
|
|
|
|
|
|
|
|
|
Qwen's Response:
|
|
|
|
|
Thought: 我应该使用Google搜索查找相关信息。
|
|
|
|
|
Action: google_search
|
|
|
|
|
Action Input: {"search_query": "周杰伦 老婆"}
|
|
|
|
|
Observation: Hannah Quinlivan
|
|
|
|
|
Thought: I now know the final answer.
|
|
|
|
|
Final Answer: 周杰伦的老婆是Hannah Quinlivan,她是一位澳大利亚籍的模特和演员。两人于2015年结婚,并育有一子。
|
|
|
|
|
|
|
|
|
|
User's Query:
|
|
|
|
|
给我画个可爱的小猫吧,最好是黑猫
|
|
|
|
|
|
|
|
|
|
Qwen's Response:
|
|
|
|
|
Thought: 我应该使用文生图API来生成一张可爱的小猫图片。
|
|
|
|
|
Action: image_gen
|
|
|
|
|
Action Input: {"prompt": "cute black cat"}
|
|
|
|
|
Observation: {"image_url": "https://image.pollinations.ai/prompt/cute%20black%20cat"}
|
|
|
|
|
Thought: I now know the final answer.
|
|
|
|
|
Final Answer: 生成的可爱小猫图片的URL为https://image.pollinations.ai/prompt/cute%20black%20cat。你可以点击这个链接查看图片。
|
|
|
|
|
"""
|