You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

97 lines
4.2 KiB
Python

1 year ago
import argparse
import json
from typing import Dict
import logging
import torch
import transformers
from transformers import AutoTokenizer
from transformers.trainer_pt_utils import LabelSmoother
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
def preprocess(
sources,
tokenizer: transformers.PreTrainedTokenizer,
max_len: int,
system_message: str = "You are a helpful assistant."
) -> Dict:
roles = {"user": "<|im_start|>user", "assistant": "<|im_start|>assistant"}
im_start = tokenizer.im_start_id
im_end = tokenizer.im_end_id
nl_tokens = tokenizer('\n').input_ids
_system = tokenizer('system').input_ids + nl_tokens
_user = tokenizer('user').input_ids + nl_tokens
_assistant = tokenizer('assistant').input_ids + nl_tokens
# Apply prompt templates
data = []
# input_ids, targets = [], []
for i, source in enumerate(sources):
source = source["conversations"]
if roles[source[0]["from"]] != roles["user"]:
source = source[1:]
input_id, target = [], []
system = [im_start] + _system + tokenizer(system_message).input_ids + [im_end] + nl_tokens
input_id += system
target += [im_start] + [IGNORE_TOKEN_ID] * (len(system)-3) + [im_end] + nl_tokens
assert len(input_id) == len(target)
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
_input_id = tokenizer(role).input_ids + nl_tokens + \
tokenizer(sentence["value"]).input_ids + [im_end] + nl_tokens
input_id += _input_id
if role == '<|im_start|>user':
_target = [im_start] + [IGNORE_TOKEN_ID] * (len(_input_id)-3) + [im_end] + nl_tokens
elif role == '<|im_start|>assistant':
_target = [im_start] + [IGNORE_TOKEN_ID] * len(tokenizer(role).input_ids) + \
_input_id[len(tokenizer(role).input_ids)+1:-2] + [im_end] + nl_tokens
else:
raise NotImplementedError
target += _target
assert len(input_id) == len(target)
input_id = torch.tensor(input_id[:max_len], dtype=torch.int)
target = torch.tensor(target[:max_len], dtype=torch.int)
data.append(dict(input_ids=input_id, attention_mask=input_id.ne(tokenizer.pad_token_id)))
return data
if __name__ == "__main__":
parser = argparse.ArgumentParser("Model Quantization using AutoGPTQ")
parser.add_argument("--model_name_or_path", type=str, help="model path")
parser.add_argument("--data_path", type=str, help="calibration data path")
parser.add_argument("--out_path", type=str, help="output path of the quantized model")
parser.add_argument("--max_len", type=int, default=8192, help="max length of calibration data")
parser.add_argument("--bits", type=int, default=4, help="the bits of quantized model. 4 indicates int4 models.")
parser.add_argument("--group-size", type=int, default=128, help="the group size of quantized model")
args = parser.parse_args()
quantize_config = BaseQuantizeConfig(
bits=args.bits,
group_size=args.group_size,
damp_percent=0.01,
desc_act=False, # set to False can significantly speed up inference but the perplexity may slightly bad
static_groups=False,
sym=True,
true_sequential=True,
model_name_or_path=None,
model_file_base_name="model"
)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, trust_remote_code=True)
tokenizer.pad_token_id = tokenizer.eod_id
data = preprocess(json.load(open(args.data_path)), tokenizer, args.max_len)
model = AutoGPTQForCausalLM.from_pretrained(args.model_name_or_path, quantize_config, device_map="auto", trust_remote_code=True)
logging.basicConfig(
format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S"
)
model.quantize(data, cache_examples_on_gpu=False)
model.save_quantized(args.out_path, use_safetensors=True)
tokenizer.save_pretrained(args.out_path)